共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
在研究与分析电池极化现象对电池状态(SOC)估算影响的基础上,提出一种扩展Kalman滤波(EKF)的算法对SOC进行估算,在Thevenin改进模型的基础上建立了电池的非线性状态空间方程,通过比较电池实际端电压和估算端电压的差值,修正安时积分法得到的SOC值,使得极化效应对SOC估算精度的影响大大减弱。仿真分析结果表明,此方法提高了电池SOC计算的精度。 相似文献
3.
作为动力锂电池的核心参数,锂电池的荷电状态(SOC)的精度估算决定了储能系统控制的精度和管理的可靠性,目前业内对于SOC估计算法的研究不够深入,导致精度低,计算量大,并且依赖于初始值精度,工程应用难度大,以至于动力锂电池管理系统的精确控制和管理难以实现。对电池等效电路PNGV模型进行改进,提高了模型精度,并结合拓展卡尔曼滤波算法(EKF)实现了高精度的SOC估计,通过电池实测和仿真验证,该算法提高了SOC估算精度,解决了SOC估计依赖初值精度问题,具有较高的工程应用价值。 相似文献
4.
动力锂电池组的荷电状态SOC估计是电动汽车能量控制的重要参数。针对串联锂电池组的SOC估计问题,利用扩展卡尔曼滤波法(EKF)和传统的安时积分法相结合(复合EKF算法)优势互补,并运用对于扩展卡尔滤波法较准确地估计电池的Thevenin模型,以电池组的最小单体电池的电压作为参考电压值,用提出的算法结合所选用的电池模型,对模拟电动车的实际工况进行电池组放电实验,证明这种复合算法不但比EKF法估计SOC准确,对误差还有一定的修正能力,而且还能满足电动车SOC准确度的需要。 相似文献
5.
精确的荷电状态(SOC)估计可以保障电池系统安全可靠地工作。钛酸锂电池优良的大倍率充放电特性使其近年来在需要大功率充放电的特种车辆上得到应用。针对使用扩展卡尔曼滤波算法估计SOC在不同模型上产生不同误差的问题,以钛酸锂电池为实验对象,针对最常用的一阶RC和二阶RC模型,利用实验数据进行了参数辨识,开展了三种不同工况下的SOC仿真研究,结果表明:两种模型的扩展卡尔曼滤波算法精度都较高,平均相对误差都在2%以内。在恒定工况下,一阶RC模型的扩展卡尔曼滤波算法有更高的精度,而在变工况下,一阶RC模型的扩展卡尔曼滤波算法比二阶RC模型精度略低,表明二阶RC模型具有更好的动态性能。 相似文献
6.
7.
在分析目前常用的锂电池SOC估算方法的基础上,按照不同温度条件下的在线辨识模型,借助改进扩展卡尔曼滤波法,对不同温度下的SOC进行估算分析。将持续变化的方差代入原扩展卡尔曼滤波算法中,完成循环工况下SOC的在线估算工作。 相似文献
8.
9.
蓄电池荷电状态(state of charge,SOC)是电池管理系统最为重要的参数之一,由于飞机蓄电池工作环境恶劣复杂,具有较强的非线性,给蓄电池的在线 SOC估计带来较大的困难。以提高复杂应力条件下飞机蓄电池在线 SOC估计精度为目的,采用性能测试实验对蓄电池性能参数的温度、放电率特性进行研究,并提出递推最小二乘法与扩展卡尔曼滤波算法结合的改进 EKF方法,实现蓄电池等效电路模型参数的在线辨识以及蓄电池在线 SOC 的估计。上述方法通过物理实验进行了验证,实验结果表明,改进后 EKF方法的 SOC 估计误差小于0.5%,估计精度获得明显提高。 相似文献
10.
11.
12.
针对储能磷酸铁锂电池并根据磷酸铁锂电池电化学阻抗谱研究,提出一种双RC并联环节的改进PNGV模型,在HPPC实验下辨识模型参数。针对扩展卡尔曼滤波(EKF)算法在估计电池荷电状态(SOC)时不能实时估测噪声的缺点,将Sage-Husa自适应算法引入EKF算法得到自适应扩展卡尔曼滤波算法,并通过对噪声实时预测和修正来提高电池SOC估计精度。在Matlab/Simulink中搭建电池及SOC估计仿真模型并在模拟动态工况下进行仿真。仿真结果表明改进PNGV模型精度优于PNGV模型;自适应扩展卡尔曼滤波算法估计电池SOC时较EKF算法收敛速度更快,估计精度更高。模型及算法的改进取得较好的效果。 相似文献
13.
锂电池荷电状态(SOC)的精确估计一直是电池管理系统的核心任务之一。电流传感器中存在非零均值的电流漂移噪声,这些噪声会造成不可避免的估计误差。为减少电流漂移噪声对估算造成的不利影响,提出了联合扩展卡尔曼滤波法,以Thevenin模型为锂电池等效电路模型,将电流漂移值作为状态变量与电池SOC进行同步预测。实验和仿真结果表明,该方法能有效抑制电流漂移噪声,提高估算精度。 相似文献
14.
为了提高铅酸电池在随机工况下荷电状态(SOC)估计精度,减小误差变化对估计精度的影响。针对自适应扩展卡尔曼滤波中误差新息序列长度固定选取的局限性,本文提出一种改进的自适应扩展卡尔曼滤波算法估计SOC。通过似然估计来监测协方差匹配算法中的误差新息序列分布变化时刻,根据误差新息的分布变化来自适应调整新息序列长度,进而降低估计SOC时的误差。首先通过带遗忘因子的递推最小二乘法(FFRLS)辨识获得等效模型参数,其模型平均误差电压为13.63 mV,然后在随机工况实验下发现,改进后的算法在估计SOC时的RMSE和MAE性能上精度分别提高了14.44%和17.26%,结果表明改进后的算法拥有更好的稳定性和精度。 相似文献
15.
基于阀控式密闭铅酸蓄电池,设计了一套纯电动汽车电池管理系统。依据Randles二阶等效电池模型,应用扩展卡尔曼滤波算法,对电池荷电状态(SOC)进行估计,并将估算结果与传统的安时积分和开路电压结合算法进行比较分析,经实验与仿真验证,此法对预测SOC值有较高的精确度和可靠性。 相似文献
16.
根据SOC在电池管理系统中的应用需求,针对锂离子电池的模型准确度低、SOC估算精度差的问题,提出了一种ARWLS-AEKF联合算法。该方法以二阶R-C网络模型为基础,通过加权自适应算法引入自适应遗传因子,优化参数辨识精度,并搭建MATLAB仿真平台联合自适应扩展卡尔曼滤波算法(AEKF)算法对SOC进行在线估算。将三种测试工况下的算法仿真结果与电池实验平台所得测量数据进行对比,结果表明:ARWLS-AEKF算法相对于离线EKF算法有更高的准确度与适应性,能适应随机变化的噪声环境。在LA_92、UDDS、HWFET工况下,ARWLS-AEKF算法的误差在2%以内,MAE分别为0.45%、0.74%、0.87%,RMSE值分别为0.54%、0.71%、0.42%。 相似文献
17.