首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y.S. Kim 《Vacuum》2008,82(6):574-578
Transparent and conducting tin-doped indium oxide (ITO) and ITO/Au multilayered films were prepared on polycarbonate (PC) substrates by magnetron sputtering without intentional substrate heating. In order to consider the influence of the Au thickness on the optoelectrical properties and structure of ITO/Au films, the thickness of the Au underlayer was varied from 5 to 20 nm. The optoelectrical properties of the films were quite dependent on the Au film thickness. The lowest sheet resistance of 11 Ω/sq. and an optical transmittance of 61% with respect to air was obtained from ITO (95 nm)/Au (5 nm) films. Thin film crystallinity was also affected by the presence of the Au underlayer and varied with the thickness of the Au films. In X-ray diffraction (XRD) spectra, ITO films did not show any characteristic diffraction peak, while ITO/Au films with a 5-nm Au underlayer showed a characteristic diffraction peak. From the figure of merit, it can be concluded that the most effective Au thickness in ITO/Au films is 5 nm.  相似文献   

2.
The roughness development of Ag film was investigated for potential as a back reflector material in thin film solar cells on flexible stainless steel (STS) substrates. The influence of metal underlayers was evaluated in order to obtain a rough Ag film at a low deposition temperature (≤400 °C). By depositing Ag on a 100 nm Al underlayer to induce Ag–Al alloying, the film roughness was increased three times more than that of Ag films on bare STS at 400 °C. The Ag film deposited on an Al underlayer at 350 °C exhibited 75 nm roughness and uniformly distributed crystallites, which was effective for visible light scattering. The Ag–Al alloy phase was also controlled using the thickness ratio of Ag and Al. The present work clearly demonstrated that an Ag back reflector film with a higher roughness could be fabricated through inserting a metal underlayer at a deposition temperature much lower than the 500 °C that has been reported in earlier works.  相似文献   

3.
C.L. Shen  Y.S. Li  S.L. Ou  S.C. Chen 《Thin solid films》2010,518(24):7356-7359
Ag underlayer (30 nm) has improved the degree of ordering and perpendicular magnetic anisotropy of CoPt films (7.5-10 nm). After annealing at 600 °C and 700 °C, the perpendicular coercivity of CoPt/Ag films has been raised as the thicknesses of CoPt layers are increased. The magnetic easy axis of CoPt/Ag films would change from a random orientation to an out-of-plane orientation. It is found that Ag underlayer with thickness of 30 nm can improve the perpendicular magnetic properties of CoPt layers with thicknesses in the range of 7.5-10 nm. The CoPt/Ag films would be a candidate for perpendicular magnetic recording media.  相似文献   

4.
In-plane magnetic anisotropy and crystal structure of FeCoB layer on Si/NiFe/Ru underlayer were investigated by using X-Ray Diffraction (XRD) measurement. A pole-figure measurement of XRD showed directionally tilted alignment of FeCo crystallites in Si/NiFe/Ru/FeCoB multilayered film with high in-plane anisotropy field H(k) but no directional alignment was found in FeCoB single layered film. The higher H(k) appeared in the Si/NiFe/Ru/FeCoB multilayered configuration with the thicker FeCoB layer. Since Ru crystallites in a multiunderlayer configuration exhibited no directional alignment, the surface structure of underlayer should be no main reason for the directional alignment of FeCo crystallites deposited on it. The dependence of hickness of FeCoB layer in Si/NiFe/Ru/FeCoB film on H(k) indicated that the in-plane magnetic anisotropy is caused by not only the structure of Ru underlayer but also oblique incidence effect of sputtered particles, which is attained in configuration of Facing Targets Sputtering (FTS) system. From these experimental results, remarkably high H(k) of 540 Oe was obtained.  相似文献   

5.
Aluminum nitride (AlN) piezoelectric thin films with c-axis crystal orientation on polymer substrates can potentially be used for development of flexible electronics and lab-on-chip systems. In this study, we investigated the effects of deposition parameters on the crystal structure of AlN thin films on polymer substrates deposited by reactive direct-current magnetron sputtering. The results show that low sputtering pressure as well as optimized N2/Ar flow ratio and sputtering power is beneficial for AlN (002) orientation and can produce a highly (002) oriented columnar structure on polymer substrates. High sputtering power and low N2/Ar flow ratio increase the deposition rate. In addition, the thickness of Al underlayer also has a strong influence on the film crystallography. The optimal deposition parameters in our experiments are: deposition pressure 0.38 Pa, N2/Ar flow ratio 2:3, sputtering power 414 W, and thickness of Al underlayer less than 100 nm.  相似文献   

6.
Epitaxial trilayer films of La0.67Sr0.33MnO3 (LSMO)/La0.75MnO3 (L0.75MO)/La0.67Sr0.33MnO3 (LSMO) have been prepared on (0 0 1) oriented LaAlO3 substrates by dc magnetron sputtering. The structure and MR are studied. All as-deposited trilayer films exhibit a semiconductor to metal transition at temperature ranging from 116 to 185 K. The MR is also shown to be dependent on the thickness of the middle oxide layer. A maximum MR value of 32% (ΔR/R0) has been obtained at 132 K under 0.4 T magnetic field for a LSMO (300 nm)/L0.75MO (70 nm)/LSMO (300 nm) trilayer film. The MR of trilayer film prefers to that of both LSMO and L0.75MO single layer films.  相似文献   

7.
FePt (50 nm) and [FePt(xnm)/AlN(1, 2, 3 nm)]10 (x=2, 3 nm) films were prepared by RF magnetron sputtering technique, then were annealed at 550 °C for 30 min. This work investigates the effect of AlN layer thickness on structure and magnetic properties of FePt/AlN multilayers. Superlattice (0 0 1) peaks can be found in the grazing incidence X-ray diffraction of FePt and [FePt (3 nm)/AlN (1, 2, 3 nm)]10 films, which indicate that the FCC phase has been partially transformed into ordered L10 phase. Compared with the single layer FePt film, superlattice (0 0 1) peaks of FePt/AlN multilayers are weak and wide, which indicates that the introducing of AlN hinders the growth of FePt particle, and also shows the introducing of AlN is not beneficial to the transformation from FCC phase to L10 phase. In addition, the low-angle XRD spectra show the layered structure of FePt/AlN has been broken after annealing. The coercivities, particle size, intergrain exchange interactions of FePt/AlN films are decreased with increasing AlN layer thickness.  相似文献   

8.
Highly conducting tri-layer films consisting of a Cu layer sandwiched between Al-doped ZnO (AZO) layers (AZO/Cu/AZO) were prepared on glass substrates at room temperature by radio frequency (RF) magnetron sputtering of AZO and ion-beam sputtering of Cu. The tri-layer films have superior photoelectric properties compared with the bi-layer films (Cu/AZO, AZO/Cu) and single AZO films. The effect of AZO thickness on the properties of the tri-layer films was discussed. The X-ray diffraction spectra show that all films are polycrystalline consisting of a Cu layer with the cubic structure and two AZO layers with the ZnO hexagonal structure having a preferred orientation of (0 0 2) along the c-axis, and the crystallite size and the surface roughness increase simultaneously with the increase of AZO thickness. When the AZO thickness increases from 20 to 100 nm, the average transmittance increases initially and then decreases. When the fixed Cu thickness is 8 nm and the optimum AZO thickness of 40 nm was found, a resistivity of 7.92 × 10−5 Ω cm and an average transmittance of 84% in the wavelength range of visible spectrum of tri-layer films have been obtained. The merit figure (FTC) for revaluing transparent electrodes can reach to 1.94 × 10−2 Ω−1.  相似文献   

9.
X.H. Xu  T. Jin  H.S. Wu  F. Wang  X.L. Li  F.X. Jiang 《Thin solid films》2007,515(13):5471-5475
Sandwich Ag/[CoPt(3 nm)/C(3 nm)]5/Ag films were deposited on glass substrates by magnetron sputtering. After annealing at 600 °C for 30 min, a nearly-perfect (001)-oriented L10 CoPt film with extremely high perpendicular anisotropy was obtained when the thickness of Ag top- and underlayer were both equal to 5 nm. The strain energy caused by the Ag layer together with the diffusion of Ag and C atoms, resulted in the enhancement of the ordering degree of the L10 CoPt phase and the development of the (001) texture of the films.  相似文献   

10.
The FePt films with various thicknesses (t) of 5 to 50 nm are deposited on Si(100) substrate without any underlayer by in-situ annealing at substrate temperature (Ts) of 620 °C. A strong (001) texture of L10 FePt film is obtained and presents high perpendicular magnetic anisotropy as the film thickness increases to 30 nm. By further increasing the thickness to exceed 30 nm, the (111) orientation of L10 FePt is enhanced greatly, indicating that the quality of perpendicular magnetic anisotropy degrades when the thickness of the FePt film is greater than 30 nm. The single-layered FePt film with thickness of 30 nm by in-situ depositing at 620 °C shows good perpendicular magnetic properties (perpendicular coercivity of 1033 kA/m (13 kOe), saturation magnetization of 1.08 webers/m2 and perpendicular squareness of 0.91, respectively), which reveal its significant potential for perpendicular magnetic recording media.  相似文献   

11.
Highly conducting aluminum-doped ZnO (30 nm)/Ag (5-15 nm)/aluminum-doped ZnO (30 nm) multilayer thin films were deposited on glass substrate by rf magnetron sputtering (for top/bottom aluminum-doped ZnO films) and e-beam evaporation (for Ag film). The transmittance is more than 70% for wavelengths above 400 nm with the Ag layer thickness of 10 nm. The resistivity is 3.71 × 10− 4 Ω-cm, which can be decreased to 3.8 × 10− 5 Ω-cm with the increase of the Ag layer thickness to 15 nm. The Haacke figure of merit has been calculated for the films with the best value being 8 × 10− 3 Ω− 1. It was shown that the multilayer thin films have potential for applications in optoelectronics.  相似文献   

12.
The soft/hard Fe/FePt film with perpendicular magnetization has been deposited on a glass substrate. The (001) oriented L10 FePt film was obtained when annealed by rapid thermal process at 800 °C and a Fe layer was deposited at room temperature with thicknesses of 2 nm to 20 nm. Controlling the Fe layer thickness allowed modification of the hysteresis loops from out-of-plane rigid magnet to in-plane exchange-spring like magnet due to the nanometer scale interface coupling. When the Fe layer thickness increased to 2 nm, the out-of-plane coercivity is reduced to 5.9 kOe but the remanence ratio (0.98) is still high. The Fe (2 nm)/FePt film shows perpendicular magnetization with linear in-plane hysteresis loop. The remanence ratio is reduced to 0.85 when the Fe layer thickness increased to 5 nm. When the Fe layer thickness was varied up to 10-20 nm, the in-plane hysteresis loop shows exchange-spring like behavior with two-step magnetization reversal processes. The films with perpendicular coercivity were moderated by the thickness of soft magnetic layer.  相似文献   

13.
Ferroelectric ultrathin BaTiO3 (BTO) films in contact with Fe underlayer have been grown by pulsed laser deposition onto MgO(100) substrates in a single vacuum cycle. The structural properties of the composite system are investigated by Rutherford backscattering spectrometry/channeling and cross-sectional transmission electron microscopy. The BTO band gap is measured by in situ reflection electron energy loss spectroscopy to be Eg = 4.1-4.3 eV depending on the growth conditions. The ferroelectric nature of BTO (thickness down to 3 nm) on top of Fe is demonstrated by piezoresponse force microscopy, which shows an out-of-plane piezoelectric coefficient of 17 ± 4 pm/V. The obtained results are promising in the view of integrating BTO/Fe stacks in functional ferroelectric tunnel junctions.  相似文献   

14.
Ni0.45Zn0.55Fe2O4 (40 nm) single-layer and Fe50Mn50 (25 nm)/Ni0.45Zn0.55Fe2O4 (40 nm) bilayer films were prepared on Si(111) substrates by radio frequency magnetron sputtering at room temperature, and the influence of FeMn underlayer on the microstructure and magnetic property of Ni-Zn ferrite film has been investigated. It was found that the introduction of Fe50Mn50 underlayer resulted in a decrease from 7.1 to 3.1 kA/m in coercivity and increase from 0.22 to 0.60 in residual magnetization ratio of the ferrite film. The complex permeability μ = μ′ − iμ″ values of the films were measured at a frequency of up to 5 GHz. An obvious resonance peak at about 1.65 GHz of the bilayer film appeared in the permeability spectrum. The reason has been researched preliminarily and was ascribed to the change of the film's microstructure with FeMn underlayer.  相似文献   

15.
A series of ZnO/Cu/ZnO multilayer films has been fabricated from zinc and copper metallic targets by simultaneous RF and DC magnetron sputtering. Numerical simulation of the optical properties of the multilayer films has been carried out in order to guide the experimental work. The influences of the ZnO and Cu layer thicknesses, and of O2/Ar ratio on the photoelectric and structural properties of the films were investigated. The optical and electrical properties of the multilayers were studied by optical spectrometry and four point probe measurements, respectively. The structural properties were investigated using X-ray diffraction. The performance of the multilayers as transparent conducting coatings was compared using a figure of merit. In experiments, the thickness of the ZnO layers was varied between 4 and 70 nm and those of Cu were between 8 and 37 nm. The O2/Ar ratios range from 1:5 to 2:1. Low sheet resistance and high transmittance were obtained when the film was prepared using an O2/Ar ratio of 1:4 and a thickness of ZnO (60 nm)/Cu (15 nm)/ZnO (60 nm).  相似文献   

16.
For mobile communication, the ferromagnetic resonance frequency of magnetic films must be over 3 GHz. A suitable anisotropic field and high resistivity for high frequency applications were obtained by inserting insulator (AlOx) layers into ferromagnetic layers (FeCoHfO). With this optimum configuration of three layers structure [FeCoHfO (400 nm)/AlOx (10 nm)]3, high frequency characteristics (permeability ∼ 100 at 100 MHz and ferromagnetic resonance frequency over 3 GHz) and high resistivity (ρ ∼ 1088) μΩ cm were achieved.  相似文献   

17.
Thin Permalloy films of zero-magnetostrictive composition were evaporated on a variety of metal film underlayers of various thicknesses (which were deposited on glass substrates) and also on smooth metallic substrates. In contrast to Prosen et al., however, the observed uniaxial magnetic anisotropy is not zero. In thin Permalloy films (100-1000 Å) deposited on high melting-point metal films (Mo, Ti, Pd, and Cr), essentially the same anisotropy field is obtained as is normally observed on glass substrates. In these films the coercivity and the angular dispersion increase slightly as the underlayer thickness increases. Permalloy properties on low melting-point metals (Au, Ag, Cu, and Al) depend strongly upon the underlayer thickness. At a given substrate temperature, a maximum in coercivity and angular dispersion is found in ∼100 Å thick underlayers of Au, Ag, and Cu. In Al underlayers, the values of coercive force along the easy and hard axis increase rapidly as a function of thickness. Large values of the easy-axis skew are obtained in all metal underlayers where the direction of the skew depends upon the geometrical arrangement of the vapor source (Permalloy) and the substrate. These effects are attributed to the microstructure and morphology of the underlayers. Electron microscopy studies are presented in confirmation of these surface geometrical effects.  相似文献   

18.
Ni films were deposited on anodic aluminum oxide (AAO) and SiO2/Si(100) substrates at 300 K by direct current magnetron sputtering with the oblique target. The film thickness was 80 nm, 160 nm and 260 nm. The films grown on AAO substrates have a network structure while those deposited on SiO2/Si(100) substrates are continuous. The network film consists of granules and is formed by granule connection. The granule consists of many fine grains. The granule size increases with increasing film thickness. The 80 nm-thick network film has a honeycomb-like structure. The continuous films grow with a columnar structure and the transverse size of columnar grains increases with increasing film thickness. All the network films show a Ni(111) diffraction peak while the 160 nm- and 260 nm-thick continuous films exhibit the Ni(111) and Ni(200) diffraction peaks. The network films have higher coercivity and residual magnetization ratio compared with the continuous films. The coercivity and the residual magnetization ratio increase with increasing film thickness for the network films while they are almost independent of the film thickness for the continuous films. A temperature dependence of the resistance within 5-200 K reveals that the 80 nm-thick network Ni film exhibits markedly a minimal resistance at about 40 K. A logarithmic temperature dependence of the conductance is verified at temperatures below 40 K. The temperature coefficient of resistance is smallest for the 80 nm-thick network film and is largest for the 260 nm-thick continuous film.  相似文献   

19.
The bulge test was used to measure the mechanical properties of polymer thin films with thickness in the range of 77 nm to 352 nm. The mechanical properties of polymeric thin films were extracted by comparing differences between curves of load vs. bulge height obtained from composite film configurations with and without the polymer layer. Both square and long rectangular windows were used to obtain the Poisson ratio and Young's Modulus. Composite film with 230 nm silicon nitride layer and 30 nm Al layer has a composite Poisson ratio of 0.29 and a Young's Modulus of 234 ± 0.8 GPa. The Poisson ratio extracted for a 352 nm Poly(methyl methacrylate)-based thermoplastic polymeric thin film was 0.39. The Young's Modulus extracted for the 77 nm thick polymeric film is 4.9 ± 0.8 GPa and for the 352 nm thick film is 5.8 ± 0.2 GPa. In the thickness range investigated, no clear thickness dependence of the Young's modulus was observed using the Bulge test.  相似文献   

20.
Depending on the resistivity and transmittance, transparent conductive oxides (TCO) are widely used in thin film optoelectronic devices. Thus doped In2O3 (ITO), ZnO, SnO2 are commercially developed. However, the deposition process of these films need sputtering and/or heating cycle, which has negative effect on the performances of the organic devices due to the sputtering and heat damages. Therefore a thermally evaporable, low resistance, transparent electrode, deposited onto substrates room temperature, has to be developed to overcome these difficulties. For these reasons combination of dielectric materials and metal multilayer has been proposed to achieve high transparent conductive oxides. In this work the different structures probed were: MoO3 (45 nm)/Ag (x nm)/MoO3 (37.5 nm), with x = 5-15 nm. The measure of the electrical conductivity of the structures shows that there is a threshold value of the silver thickness: below 10 nm the films are semiconductor, from 10 nm and above the films are conductor. However, the transmittance of the structures decreases with the silver thickness, therefore the optimum Ag thickness is 10 nm. A structure MoO3 (45 nm)/Ag (10 nm)/MoO3 (37.5 nm) resulted with a resistivity of 8 × 10− 5 Ω cm and a transmittance, at around 600 nm, of 80%. Such multilayer structure can be used as anode in organic solar cells according to the device anode/CuPc/C60/Alq3/Al. We have already shown that when the anode of the cells is an ITO film the introduction of a thin (3 nm) MoO3 layer at the interface anode (ITO)/organic electron donor (CuPc) allows reducing the energy barrier due to the difference between the work function of ITO and the highest occupied molecular orbital of CuPc [1]. This property has been used in the present work to achieve a high hole transfer efficiency between the CuPc and the anode. For comparison MoO3/Ag/MoO3/CuPc/C60/Alq3/Al and ITO/MoO3/CuPc/C60/Alq3/Al solar cells have been deposited in the same run. These devices exhibit efficiency of the same order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号