首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in surface electromyographic (EMG) amplitude during sustained, fatiguing contractions are commonly attributed to variations in muscle fiber conduction velocity (MFCV), motor unit firing rates, transmembrane action potentials and the synchronization or recruitment of motor units. However, the relative contribution of each factor remains unclear. Analytical relationships relating changes in MFCV and mean motor unit firing rates to the root mean square (RMS) and average rectified (AR) value of the surface EMG signal are derived. The relationships are then confirmed using model simulation. The simulations and analysis illustrate the different behaviors of the surface EMG RMS and AR value with changing MFCV and firing rate, as the level of motor unit superposition varies. Levels of firing rate modulation and short-term synchronization that, combined with variations in MFCV, could cause changes in EMG amplitude similar to those observed during sustained isometric contraction of the brachioradialis at 80% of maximum voluntary contraction were estimated. While it is not possible to draw conclusions about changes in neural control without further information about the underlying motor unit activation patterns, the examples presented illustrate how a combined analytical and simulation approach may provide insight into the manner in which different factors affect EMG amplitude during sustained isometric contractions.  相似文献   

2.
Experimental electromyogram (EMG) data from the human biceps brachii were simulated using the model described in [10] of this work. A multichannel linear electrode array, spanning the length of the biceps, was used to detect monopolar and bipolar signals, from which double differential signals were computed, during either voluntary or electrically elicited isometric contractions. For relatively low-level voluntary contractions (10%-30% of maximum force) individual firings of three to four-different motor units were identified and their waveforms were closely approximated by the model. Motor unit parameters such as depth, size, fiber orientation and length, location of innervation and tendonous zones, propagation velocity, and source width were estimated using the model. Two applications of the model are described. The first analyzes the effects of electrode rotation with respect to the muscle fiber direction and shows the possibility of conduction velocity (CV) over- and under-estimation. The second focuses on the myoelectric manifestations of fatigue during a sustained electrically elicited contraction and the interrelationship between muscle fiber CV, spectral and amplitude variables, and the length of the depolarization zone. It is concluded that a) surface EMG detection using an electrode array, when combined with a model of signal propagation, provides a useful method for understanding the physiological and anatomical determinants of EMG waveform characteristics and b) the model provides a way for the interpretation of fatigue plots.  相似文献   

3.
Single site electromyograph amplitude estimation   总被引:2,自引:0,他引:2  
Previous investigators have experimentally demonstrated and/or analytically predicted that temporal whitening of the surface electromyograph (EMG) waveform prior to demodulation improves the EMG amplitude estimate. However, no systematic study of the influence of various whitening filters upon amplitude estimate performance has been reported. The authors describe a phenomenological mathematical model of a single site of the surface EMG waveform and reports on experimental studies which examined the performance of several temporal whitening filters. Surface EMG waveforms were sampled during nonfatiguing, constant-force, isometric contractions of the biceps or triceps muscles, over the range of 10-75% maximum voluntary contraction. A signal-to-noise ratio (SNR) was computed from each amplitude estimate (deviations about the mean value of the estimate were considered as noise). A moving average root mean square estimator (245 ms window) provided an average±standard deviation (A±SD) SNR of 10.7±3.3 for the individual recordings. Temporal whitening with one fourth-order whitening filter designed per site improved the A±SD SNR to 17.6±6.0  相似文献   

4.
We applied short-time Fourier analysis to surface electromyograms (EMG) recorded during rapid movements, and during isometric contractions at constant forces. We selected a portion of the data to be transformed by multiplying the signal by a Hamming window, then computed the discrete Fourier transform. Shifting the window along the data record, we computed a new spectrum each 10 ms. We displayed the transformed data in spectograms or "voiceprints." This short-time technique allowed us to see time-dependencies in the EMG that are normally averaged in the Fourier analysis of these signals. Spectra of EMG's during isometric contractions at constant force vary in the short (10-20 ms) term. Moments of the spectral distribution show this variability. Short-time spectra from EMG's recorded during rapid movements were much less variable. The windowing technique picked out the typical "three-burst pattern" in EMG's from both wrist and head movements. Spectra during the bursts were more consistent than those during isometric contractions. Furthermore, there was a consistent shift in spectral statistics in the course of the three bursts. Both the center frequency and the variance of the spectral energy distribution grew from the first burst to the second burst in the same muscle. We discuss this pattern with respect to the origin of the EMG bursts in rapid movement. We also extend the analogy between electromyograms and speech signals to argue for future applicability of short-time spectral analysis of EMG.  相似文献   

5.
A systematic, experimental study of the influence of smoothing window length on the signal-to-noise ratio (SNR) of electromyogram (EMG) amplitude estimates is described. Surface EMG waveforms were sampled during nonfatiguing, constant-force, constant-angle contractions of the biceps or triceps muscles, over the range of 10%-75% maximum voluntary contraction. EMG amplitude estimates were computed with eight different EMG processor schemes using smoothing length durations spanning 2.45-500 ms. An SNR was computed from each amplitude estimate (deviations about the mean value of the estimate were considered as noise). Over these window lengths, average ± standard deviation SNR's ranged from 1.4±0.28 to 16.2±5.4 for unwhitened single-channel EMG processing and from 3.2±0.7 to 37.3±14.2 for whitened, multiple-channel EMG processing (results pooled across contraction level). It was found that SNR increased with window length in a square root fashion. The shape of this relationship was consistent with classic theoretical predictions, however none of the processors achieved the absolute performance level predicted by the theory. These results are useful in selecting the length of the smoothing window in traditional surface EMG studies. In addition, this study should contribute to the development of EMG processors which dynamically tune the smoothing window length when the EMG amplitude is time varying  相似文献   

6.
Describes an experimental study which relates simultaneous elbow flexor-extensor electromyogram (EMG) amplitude to joint torque. Investigation was limited to the case of isometric, quasi-isotonic (slowly force-varying), nonfatiguing contractions. For each of the flexor and extensor muscle groups, the model relationship between muscle group torque contribution and EMG amplitude was constrained to be a sum of basis functions which had a linear dependence on a set of fit parameters. With these constraints, the problem of identifying the EMG-to-torque relationship was reduced to a linear least squares problem. Surface EMGs from elbow flexors and extensors, and joint torque were simultaneously recorded for nonfatiguing, quasi-isotonic, isometric contractions spanning 0-50% maximum voluntary contraction. Single-/multiple-channel unwhitened/whitened/adaptively-whitened EMG amplitude processors were used to identify an EMG-to-torque relation, and then estimate joint torque based on this relation. Each unwhitened multiple-channel EMG-to-torque estimator had a standard error (SE) approximately 70% of its respective single-channel estimator. The adaptively whitened multiple-channel joint torque estimator had an SE approximately 90% of the unwhitened multiple-channel estimator, providing an estimation error ≈3% of the combined flexion/extension torque range. The experimental studies demonstrated that higher fidelity EMG amplitude processing led to improved joint torque estimation  相似文献   

7.
This study aimed to identify the functional contribution of reflexes to human motor control during posture maintenance. Continuous random force disturbances were applied at the hand while the subjects were instructed to minimize the deviation resulting from the force disturbances. The results were analyzed in the frequency domain with frequency response functions (FRFs). Two FRFs were evaluated: 1) the mechanical admittance and 2) the reflexive impedance, expressing the dynamic relation between position and muscle activation (assessed via electromyography, EMG). The reflexive impedance is a direct measure of the proprioceptive reflexes. To record all relevant dynamical characteristics of the arm, wide bandwidth signals were used as force disturbance. Distributing the power of the signal over fewer frequencies within the bandwidth improved the signal-to-noise-ratio SNR of the EMG recordings, facilitating reliable estimation of the reflexive impedance. The coherence indicated that the relation between force disturbance and EMG is linear under the given conditions and improved with the SNR. The method of designing disturbance signals and the estimation of the reflexive impedance are useful for studies aiming to quantify proprioceptive reflexes and to investigate its functionality.  相似文献   

8.
Surface EMG was recorded from the biceps with fixed muscle length at S0 percent maximal voluntary contraction. The signal bandpass was 10-230 Hz where most of the surface EMG energy is located. The signal sampled at 500 Hz was found to have a changing spectrum. Stationary segments of 500 ms were subject to linear prediction mathematics to model the system.  相似文献   

9.
Estimation of motor unit twitches   总被引:1,自引:0,他引:1  
This study deals with estimation of the mechanical twitch of a single motor unit in human muscle during voluntary contraction. The existing estimation method is based on averaging of the force produced by the whole muscle, using the motor unit action potential for triggering. This method leads to underestimation of twitch amplitude and rise time due to partial fusion of the twitches, even at the lowest firing rates which can be maintained during voluntary contraction. To obtain unbiased twitch estimates, even when the twitches partially fuse, three versions of a nonparametric system identification method are explored: averaging plus least squares estimation; least squares estimation; and Markov estimation. Averaging plus least squares estimation give poorer noise reduction than least squares estimation. The noise reduction obtained by least squares estimation is about the same as the noise reduction obtained by averaging alone. The noise is mainly due to the contraction of all active motor units, except the unit being studied. This noise has dominating low-frequency components. Markov estimation takes the spectrum of the noise into account, and thus in most cases provides a better estimate than least squares estimation.  相似文献   

10.
The estimation of on-off timing of human skeletal muscles during movement is an important issue in surface electromyography (EMG) signal processing with relevant clinical applications. In this paper, a novel approach to address this issue is proposed. The method is based on the identification of single motor unit action potentials from the surface EMG signal with the use of the continuous wavelet transform. A manifestation variable is computed as the maximum of the outputs of a bank of matched filters at different scales. A threshold is applied to the manifestation variable to detect EMG activity. A model, based on the physical structure of the muscle, is used to test the proposed technique on synthetic signals with known features. The resultant bias of the onset estimate is lower than 40 ms and the standard deviation lower than 30 ms in case of additive colored Gaussian noise with signal-to-noise ratio as low as 2 dB. Comparison with previously developed methods was performed, and representative applications to experimental signals are presented. The method is designed for a complete real-time implementation and, thus, may be applied in clinical routine activity.  相似文献   

11.
This study introduces the application of nonlinear spatial filters to help identify single motor unit discharge from multiple channel surface electromyogram (EMG) signals during low force contractions. The nonlinear spatial filters simultaneously take into account the instantaneous amplitude and frequency information of a signal. This property was used to enhance motor unit action potentials (MUAPs) in the surface EMG record. The advantages of nonlinear spatial filtering for surface MUAP enhancement were investigated using both simulation and experimental approaches. The simulation results indicate that when compared with various linear spatial filters, nonlinear spatial filtering achieved higher SNR and higher kurtosis of the surface EMG distribution. Over a broad range of SNR and kurtosis levels for the input signal, nonlinear spatial filters achieved at least 32 times greater SNR and 11% higher kurtosis for correlated noise, and at least 15 times greater SNR and 1.7 times higher kurtosis for independent noise, across electrode array channels. The improvements offered by nonlinear spatial filters were further documented by applying them to experimental surface EMG array recordings. Compared with linear spatial filters, nonlinear spatial filters achieved at least nine times greater SNR and 25% higher kurtosis. It follows that nonlinear spatial filters represent a potentially useful supplement to linear spatial filters for detection of motor unit activity in surface EMG at low force contractions.  相似文献   

12.
Decomposition of multiunit electromyographic signals   总被引:5,自引:0,他引:5  
We have developed a comprehensive technique to identify single motor unit (SMU) potentials and to decompose overlapped electromyographic (EMG) signals into their constituent SMU potentials. This technique is based on one-channel EMG recordings and is easily implemented for many clinical EMG tests. There are several distinct features of our technique: 1) it measures waveform similarity of SMU potentials in the wavelet domain, which gives this technique significant advantages over other techniques; 2) it classifies spikes based on the nearest neighboring algorithm, which is less sensitive to waveform variation; 3) it can effectively separate compound potentials based on a maximum signal energy deduction algorithm, which is fast and relatively reliable; and 4) it also utilizes the information on discharge regularities of SMU's to help correct possible decomposition errors. The performance of this technique has been evaluated by using simulated EMG signals composed of up to eight different discharging SMU's corrupted with white noise, and also by using real EMG signals recorded at levels up to 50% maximum voluntary contraction. We believe that it is a very useful technique to study SMU discharge patterns and recruitment of motor units in patients with neuromuscular disorders in clinical EMG laboratories.  相似文献   

13.
The electromyographic (EMG) signal provides information about the performance of muscles and nerves. At any instant, the shape of the muscle signal, motor unit action potential (MUAP), is constant unless there is movement of the position of the electrode or biochemical changes in the muscle due to changes in contraction level. The rate of neuron pulses, whose exact times of occurrence are random in nature, is related to the time duration and force of a muscle contraction. The EMG signal can be modeled as the output signal of a filtered impulse process where the neuron firing pulses are assumed to be the input of a system whose transfer function is the motor unit action potential. Representing the neuron pulses as a point process with random times of occurrence, the higher order statistics based system reconstruction algorithm can be applied to the EMG signal to characterize the motor unit action potential. In this paper, we report results from applying a cepstrum of bispectrum based system reconstruction algorithm to real wired-EMG (wEMG) and surface-EMG (sEMG) signals to estimate the appearance of MUAPs in the Rectus Femoris and Vastus Lateralis muscles while the muscles are at rest and in six other contraction positions. It is observed that the appearance of MUAPs estimated from any EMG (wEMG or sEMG) signal clearly shows evidence of motor unit recruitment and crosstalk, if any, due to activity in neighboring muscles. It is also found that the shape of MUAPs remains the same on loading.  相似文献   

14.
Identification of the innervation zone is widely used to optimize the accuracy and precision of noninvasive surface electromyography (EMG) signals because the EMG signal is strongly influenced by innervation zones. However, simply structured fusiform muscle, such as biceps brachii muscle, has been employed mainly due to the simplicity with which the propagation from raw EMG signals can be observed. In this study, the optimum electrode location (OEL), free from innervational influence, was investigated by the propagation pattern of action potentials for brachii muscles and more complicated deltoid muscle structures using an automatized signal analysis technique. The technique employed newly developed computer software with additional clinical uses and minimized subjective differences. EMG signals were recorded using surface array electrodes during voluntary isometric contractions obtained from 12 healthy male subjects. Peaks in EMG signals were detected and averaged for each muscle. The propagation patterns and OEL were examined from biceps brachii muscles for all subjects and from deltoid muscles for seven subjects. The estimated locations were partially confirmed by comparing the root mean squares of the EMG signals. These results show that propagation patterns and OEL could be estimated simply and automatically even from the surface EMG signals of deltoid muscles.  相似文献   

15.
A Nonstationary Model for the Electromyogram   总被引:1,自引:0,他引:1  
A theoretical model of the electromyographic (EMG) signal has been developed. In the model, the neural pulse train inputs were considered to be point processes which passed through linear, time-invariant systems that represented the respective motor unit action potential. The outputs were then summed to produce the EMG. It was assumed, that in the production of muscle force, the controlled parameter was the number of active motor units, n(t). The model then showed that the EMG can be represented as an amplitude modulation process of the form EMG = [Kn(t)1/2 w(t) with the stochastic process, w(t), having the spectral and probability characteristics of the EMG during a constant contraction. Various assumptions made in the model development have been verified by experiments.  相似文献   

16.
The averaged instantaneous frequency (AIF) is proposed as an alternative method for the frequency analysis of surface electromyography (EMG) in the study of muscle fatigue during sustained, isometric muscle contractions. Results from performance analysis using experimental EMG signals demonstrate the low variability of the proposed frequency variable. Indeed, the AIF measure is shown to perform significantly better than the widely used mean and median frequency variables, in terms of robustness to the length of the analysis window.  相似文献   

17.
We intend to apply Matsuoka neural oscillator into humanoid chewing robots to generate rhythmic actuation of central pattern generator (CPG) and adapt it for voluntary actuation due to sensory feedback. In this paper a single Matsuoka oscillator of two neurons is used for two phase-locked muscles (e.g. masseter and digastric muscles) or for a single robotic joint. To help design and tune the oscillator we have developed three graphical user interfaces (GUI) with aid of which the simulation, parameters’ influence and adaptation of the oscillator can be analysed and for specific pattern of muscle activities the oscillator can be selected. Discussions are made in relation to the experimentally confirmed EMG (electromyography) of muscle activities for various foods. A case study involving a jaw, driven by a couple of opening and closing muscles that are commanded by motoneurons is presented. The force of the muscles is described in nonlinear Hill model while the motoneuron for muscle activities is modelled in the oscillator. Simulations are performed to show the oscillator’s ability in generating and adapting its rhythmic outputs with respect to the chewing without food (i.e, EMG only for rhythmic muscle activities), with foods (i.e., EMG for rhythmic and additional muscle activities) and with crushable foods (to see how quickly the oscillator to reduce its force commands in order not to damage the teeth). Our work is also meaningful for brain-based control of assistive or rehabilitative devices and EMG-driven neuromusculoskeletal models.  相似文献   

18.
The power spectrum of the surface EMG signal is known to undergo a compression towards the lower frequencies during sustained muscle contractions. The median frequency appears to be the preferred parameter to monitor this compression. This paper describes a simple circuit which can provide an estimate of the median frequency.  相似文献   

19.
In this paper, we propose techniques of surface electromyographic (EMG) signal detection and processing for the assessment of muscle fiber conduction velocity (CV) during dynamic contractions involving fast movements. The main objectives of the study are: 1) to present multielectrode EMG detection systems specifically designed for dynamic conditions (in particular, for CV estimation); 2) to propose a novel multichannel CV estimation method for application to short EMG signal bursts; and 3) to validate on experimental signals different choices of the processing parameters. Linear adhesive arrays of electrodes are presented for multichannel surface EMG detection during movement. A new multichannel CV estimation algorithm is proposed. The algorithm provides maximum likelihood estimation of CV from a set of surface EMG signals with a window limiting the time interval in which the mean square error (mse) between aligned signals is minimized. The minimization of the windowed mse function is performed in the frequency domain, without limitation in time resolution and with an iterative computationally efficient procedure. The method proposed is applied to signals detected from the vastus laterialis and vastus medialis muscles during cycling at 60 cycles/min. Ten subjects were investigated during a 4-min cycling task. The method provided reliable assessment of muscle fatigue for these subjects during dynamic contractions.  相似文献   

20.
We propose a novel method for estimation of muscle fiber conduction velocity from surface electromyographic (EMG) signals. The method is based on the regression analysis between spatial and temporal frequencies of multiple dips introduced in the EMG power spectrum through the application of a set of spatial filters. This approach leads to a closed analytical expression of conduction velocity as a function of the auto- and cross-spectra of monopolar signals detected along the direction of muscle fibers. The performance of the algorithm was compared with respect to that of the classic single dip approach on simulated and experimental EMG signals. The standard deviation of conduction velocity estimates from simulated single motor unit action potentials was reduced from 1.51 m/s [10 dB signal-to-noise ratio (SNR)] and 1.06 m/s (20 dB SNR) with the single dip approach to 0.51 m/s (10 dB) and 0.23 m/s (20 dB) with the proposed method using 65 dips. When 200 active motor units were simulated in an interference EMG signal, standard deviation of conduction velocity decreased from 0.95 m/s (10 dB SNR) and 0.60 m/s (20 dB SNR) with a single dip to 0.21 m/s (10 dB) and 0.11 m/s (20 dB) with 65 dips. In experimental signals detected from the abductor pollicis brevis muscle, standard deviation of estimation decreased from (mean +/- SD over 5 subjects) 1.25 +/- 0.62 m/s with one dip to 0.10 +/- 0.03 m/s with 100 dips. The proposed method does not imply limitation in resolution of the estimated conduction velocity and does not require any iterative procedure for the estimate since it is based on a closed analytical formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号