首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
LiFePO4/C复合正极材料的制备及其电化学性能研究   总被引:1,自引:0,他引:1  
采用高温固相碳热还原法(CTR,Carbothermal Reduction)合成了LiFePO4/C复合正极材料。采用XRD,SEM以及BET等方法对产物进行表征。结果表明,所得LiFeP04/C材料有着单一的橄榄石型晶体结构。750℃下制备产物的BET比表面积为39.7002m^2/g。利用恒流充放电,循环伏安法(CV),电化学阻抗谱(EIS)等电化学手段研究了LiFePO4/C材料的电化学性质。结果表明:750℃下制备的LiFePO4/C复合材料在25℃工作温度下,有着优异的循环稳定性和大倍率充放电性能,使用850ma/g(5C)的电流密度对电池充放电90次后,电池放电比容量仍能保持11lmAh/g。在55℃工作温度下1C充放电倍率时,首次和第90次循环的放电比容量分别为14513mAh/g和142.9mAh/g。  相似文献   

2.
采用高温固相法合成了锂离子电池正极材料LiFePO4及改性的LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C材料。采用X射线衍射仪和扫描电镜分析样品的晶体结构和表面形貌。结果表明:改性后的LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C材料与LiFePO4一样均为单一的橄榄石结构。以20 mA/g电流密度充放电,LiFe0.9Ni0.1PO4的首次放电容量为140 mA.h/g,较LiFePO4增加了12%;而复合掺杂得到的含碳量为2.8%的LiFe0.9Ni0.1PO4/C材料,首次放电容量达162 mA.h/g,充放电循环30次后放电电容量仍为147 mA.h/g,容量衰减仅为9%。当充放电电流密度提高到80 mA/g时,LiFePO4、LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C的放电容量分别为86、114和140 mA.h/g。改性后的LiFe0.9Ni0.1PO4/C的电化学性能得到了较大的改善。  相似文献   

3.
碳包覆镍掺杂LiFePO4正极材料的合成与电化学性能   总被引:6,自引:0,他引:6  
采用水热法在160℃下合成了单相橄榄石结构的LiFePO4和LiFe0.95Ni0.05PO4。经550℃聚丙稀裂解碳包覆后得到LiFePO4/C的颗粒尺寸在200nm左右,碳包覆镍掺杂LiFe0.95Ni0.05PO4/C的颗粒尺寸在100nm以下。电化学测试结果表明:LiFePO4/C和LiFe0.95PO4/C的0.1C首次充放电可逆容量分别达到154mAh·g^-1和149mAh·g^-1,但掺镍的LiFe0.95Ni0.05PO4/C具有更优异的大电流充放电循环特性,0.5C和1C充放电100次后的放电容量分别达到147mAb·g^-1和134mAh·g^-1。  相似文献   

4.
通过固相反应制备了Mg2+和Co4+复合掺杂的LiFePO4电极材料。采用X射线衍射、恒电流充放电和循环伏安研究复合掺杂对 LiFePO4结构和电化学性能的影响。结果表明:复合掺杂能够提高 LiFePO4的首次放电比容量,0.1C和1C的放电容量分别达到147.2mA·h/g 和133.3mA·h/g。循环伏安测试结果表明:复合掺杂改善了LiFePO4的导电性能,增强了Li+的脱嵌可逆性。  相似文献   

5.
以超声波辅助沉淀法合成的纳米级球形FePO4·2H2O为原料,采用碳热还原法制备了复合金属掺杂的LiFePO4/C复合材料。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电测试,循环伏安和交流阻抗测试表征了FePO4·2H2O和LiFePO4/C的物相、结构和电化学性能。结果表明,溶液浓度为0.1 mol/L时制备的FePO4·2H2O为分布均匀的纳米级球形颗粒。复合金属掺杂显著提高了LiFePO4的放电比容量,Ni和Nb复合掺杂的LiFePO4/C复合材料表现出了最佳的电化学性能,0.1 C倍率条件下首次放电容量158.8 mAh/g,1 C倍率下首次放电容量150.2 mAh/g,100次循环后容量保持率分别为98.30%和97.8%。Ni和Nb复合掺杂后提高了LiFePO4的锂离子扩散速率和电导率。  相似文献   

6.
通过固相反应制备了Mg2+和Co4+复合掺杂的LiFePO4电极材料。采用X射线衍射、恒电流充放电和循环伏安研究复合掺杂对 LiFePO4结构和电化学性能的影响。结果表明:复合掺杂能够提高 LiFePO4的首次放电比容量,0.1C和1C的放电容量分别达到147.2mA·h/g 和133.3mA·h/g。循环伏安测试结果表明:复合掺杂改善了LiFePO4的导电性能,增强了Li+的脱嵌可逆性。  相似文献   

7.
银包覆对LiFePO4结构与性能的影响   总被引:1,自引:0,他引:1  
以聚已二醇(PEG)为分散剂,利用球磨工艺让AgNO3与预合成的LiFePO4充分混合,在氮气气氛下原位合成了LiFePO4/Ag复合材料.扫描电镜表明材料颗粒细小,分布均匀;背散射电子图像和元素分布图显示了银在材料中的分布情况.材料表面的光电子能谱表明银是以单质的形式存在.以合成材料为正极的电池的循环伏安特性曲线表明,在锂离子插入和脱出过程中只有单一机制的存在.随着电流密度的增大,电池容量没有明显的降低,但是电极极化效应逐渐明显.当充放电电流密度达到C时,电池只有很小的容量和较大的电极极化效应.把电流密度减小到C/10时,电池的容量又得到了恢复.在C/8的电流密度下,电池循环了45次,没有观察到明显的容量衰减现象.  相似文献   

8.
以聚丙烯酸为碳源,用低温还原-插锂与聚合物高温分解相结合的方法制备LiFePO4/C复合正极材料;FePO4被还原插锂与含碳聚合物化学包覆同时进行,简化了制备工艺,降低了制备成本。经X射线粉末衍射(XRD)、扫描电镜(SEM)以及恒电流充/放电测试,研究了不同焙烧温度对合成产物的物相、晶胞参数、表面形貌及电化学性能的影响。研究发现,焙烧温度为600℃时,合成产物的0.1 C倍率放电具有最高的放电容量和最好的循环稳定性。在0.1 C下LiFePO4/C复合材料的首次放电容量高达141.3 mAh/g,库伦效率为98.0%,100次循环后,其容量保持率为108.3%。  相似文献   

9.
金属Sb与石墨复合材料的电化学吸放锂性质   总被引:6,自引:0,他引:6  
探索了用机械合金化制备得到的金属锑与石墨复合材料(Sbx-C1-x,x=0.1—0.4)作为锂离子电池负极材料的电化学吸放锂特性,发现球磨得到的Sbx-C1-x是由微米级Sb颗粒和C所组成的复合物。Sb0.2-C0.8的吸放锂过程实际上是由石墨和金属锑的吸放锂反应组成,首次吸锂容量达705mAh/g,首次不可逆容量约130mAh/g。对Sb含量与Sbx-C1-x(x=0.1-0.4)电化学吸放锂性能的关系表明Sb0.2-C0.8具有最高的首次充放电容量,而碳含量对循环稳定性有较大的影响。  相似文献   

10.
LiFePO4/C锂离子电池正极材料的电化学性能   总被引:7,自引:2,他引:7  
以碳凝胶作为碳添加剂,采用固相法制备了复合型LiFePO4/C锂离子电池正极材料.研究了不同掺碳量对样品性能的影响.利用X射线衍射仪、扫描电镜和碳硫(质量分数)分析方法对所得样品的晶体结构、表面形貌、含碳量进行分析研究.结果表明:样品中的碳含量(质量分数)分别为0%、5%、10%、22%,所得样品均为单一的橄榄石型晶体结构,碳的加入使LiFePO4颗粒粒径减小.另外,碳分散于晶体颗粒之间,增强了颗粒之间的导电性.合成样品的电化学性能测试结果表明,掺碳后的LiFePO4放电比容量和循环性能都得到显著改善.其中,含碳量为22%的LiFePO4/C在0.1 C倍率下放电,首次放电容量达143.4 mA·h/g,充放电循环6次后电容量为142.7 mA·h/g,容量仅衰减0.7%.  相似文献   

11.
In the search for improved materials for rechargeable lithium batteries, LiFePO4 offers interesting possibilities because of its low raw materials cost, environmental friendliness and safety. The main drawback with using the material is its poor electronic conductivity and this limitation has to be overcome. Here Al-doped LiFePO4/C composite cathode materials were prepared by a polymer-network synthesis technique. Testing of X-ray diffraction, charge-discharge, and cyclic voltammetry were carried out for its performance. Results show that Al-doped LiFePO4/C composite cathode materials have a high initial capacity, good cycle stability and excellent low temperature performance. The electrical conductivity of LiFePO4 material can be obviously improved by doping Al. The better electrochemical performances of Al-doped LiFePO4/C composite cathode materials have a connection with its conductivity.  相似文献   

12.
采用固相反应法在惰性气氛下合成了橄榄石型LiFePO4及其Ni^2+掺杂正极材料,采用XRD,SEM和充放电等方法对目标材料进行了表征。XRD分析表明,掺杂少量Ni^2+后的LiFePO4晶体结构并未发生变化;SEM观察发现,掺杂后,样品的粒径变小;充放电测试得出,比未掺杂的LiFePO4具有更好的电化学性能,首次放电比容量达145mAh·g^-1,高于纯的LiFePO4正极材料的容量90mAh·g^-1,经100次循环后掺杂Ni^2+的LiFePO4和LiFePO4样品的容量保有率分别为91%和53%。  相似文献   

13.
反应物中锂元素的量对LiFePO4/C电化学性能的影响   总被引:1,自引:0,他引:1  
以Fe2O3和LiH2PO4为原料,葡萄糖为碳源,采用碳热还原法合成了LiFePO4/C正极材料,考察了反应物中锂元素的量对正极材料LiFePO4/C电化学性能的影响。用X射线衍射、扫描电镜(SEM)和恒电流充放电测试和循环伏安法对正极材料的结构、形貌以及电化学性能进行了研究。结果表明:当反应物中额外添加锂元素的量是理论量的10%时,制得的正极材料的电化学性能最佳,在0.2和1C(1C=170mA/g)的充放电倍率下,首次放电比容量分别为156.3和137.5mAh/g,经过20次充放电循环后,容量基本保持不变。  相似文献   

14.
采用溶胶-凝胶法制备了LiFePO4/C正极材料.采用X射线衍射(XRD)、扫描电镜(SEM)和电化学手段对材料进行了结构表征和性能测试.研究了其前驱体体系pH值对材料性能的影响.结果表明:当前驱体体系pH值为8.4时,LiFePO4/C正极材料具有最佳的电化学性能.在0.1C倍率下充放电,磷酸铁锂首次放电比容量为16...  相似文献   

15.
以LiH2PO4和FeC2O4.2H2O为原料,聚乙烯醇为碳源,通过机械化学活化辅助固相法合成原位碳包覆的LiFePO4材料;考察合成温度对LiFePO4/C材料晶体结构、物理和电化学性能的影响。结果表明:700℃下处理的产物结晶良好、分布均匀、颗粒细小;在最佳的热处理条件下,热解碳在LiFePO4颗粒表面形成了良好的纳米导电层,LiFePO4/C材料在0.1C、0.5C、1C和2C倍率下放电比容量分别为155.7、150.1、140.1和130 mA.h/g,且材料在0.1~2C范围内充放电都有很平稳的平台,极化小,并具有较高的高倍率(2C)放电比容量和较好的循环性能。  相似文献   

16.
La3+ was selected to elevate the lattice electronic conductivity of LiFePO4,and LiFePO4/(C+La3+) cathode powders were synthesized by microwave heating using a domestic microwave oven for 35 min. The microstructures and morphologies of the synthesized materials were investigated by XRD and SEM. The electrochemical performances were evaluated by galvanostatic charge-discharge. The electrochemical performance of LiFePO4 with different La3+ contents was studied. Results indicated that the initial specific disch...  相似文献   

17.
Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precursors of LiFePO4, LiFePO4/C composite and the resultant products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and the electrochemical performances were investigated by galvanostatic charge and discharge tests. The precursors composed of amorphous Fe3(PO4)2·xH2O and crystalline Li3PO4 obtained in the co-precipitation processing have a sphere-like morphology. The spherical LiFePO4 derived from the calcinations of the precursor at 700 ℃ for 10 h in a reduction atmosphere shows a discharge capacity of 119 mAh·g -1 at the C/10 rate, while the LiFePO4/C composite with 10wt.% carbon addition exhibits a discharge capacity of 140 mAh·g -1.The electrochemical performances indicate that the LiFePO4/C composite has a higher specific capacity and a more stable cycling performance than the bare olivine LiFePO4 due to the carbon addition enhancing the electronic conductivity.  相似文献   

18.
以环氧树脂为碳源,通过不同热处理制度制备出不同结构的LiFePO4/C复合材料,研究热处理制度对LiFePO4/C复合材料形貌和电化学性能的影响.结果表明:迅速升温制备的复合材料为碳包覆结构,缓慢升温并增加固化过程后制备的复合材料为多孔状.多孔状的LiFePO4/C复合材料具有更优良的电化学性能,电流密度为15 mA·g-1时,其放电容量为164.9 mAh·g-1,当电流密度为600 mA·g-1时,其放电容量为140.1 mAh·g-1,经过50循环后,容量保持率为99.1%.  相似文献   

19.
采用1,2-丙二醇作为表面活性剂,在水热反应中合成正极材料LiFePO4。用XRD、SEM、粒径分布测试和恒电流充放电方法,分别研究了1,2-丙二醇对LiFePO4的结构、形貌、粒径和电化学性能的影响。结果表明:加入适量的丙二醇不改变LiFePO4的橄榄石结构,但可使材料的结晶粒度变小,粒径分布变得均匀;当丙二醇加入量为10 mL时,得到的LiFePO4平均粒径d(0.5)=1.128μm,粒径分布范围为0.316~6.607μm;该材料在0.2C倍率下的首次放电比容量为144 mAh/g,循环性能良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号