首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary objective of this work is to characterize and compare the dynamic mechanical behavior of asphalt concrete mixes with styrene butadiene styrene (SBS) polymer and crumb rubber modified asphalt binders with the behavior of mixes with unmodified viscosity grade asphalt binders. Asphalt binders are characterized for their physical and rheological properties. Simple performance tests like dynamic modulus, dynamic and static creep tests are carried out at varying temperatures and time. Dynamic modulus master curves constructed using numerical optimization technique is used to explain the time and temperature dependency of modified and unmodified asphalt binder mixes. Creep parameters estimated through regression analysis explained the permanent deformation characteristics of asphalt concrete mixes. From the dynamic mechanical characterization studies, it is found that asphalt concrete mixes with SBS polymer modified asphalt binder showed significantly higher values of dynamic modulus and reduced rate of deformation at higher temperatures when compared to asphalt concrete mixes with crumb rubber and unmodified asphalt binders. From the concept of energy dissipation, it is found that SBS polymer modification substantially reduces the energy loss at higher temperatures. Multi-factorial analysis of variance carried out using generalized liner model showed that temperature, frequency and asphalt binder type significant influences the mechanical response of asphalt concrete mixes. The mechanical response of SBS polymer modified asphalt binders are significantly correlated with the rutting resistance of asphalt concrete mixes.  相似文献   

2.
The present contribution focuses on the modification of a 160/220 bituminous binder with clay and polymer/clay nanocomposites. Bitumen/polymer/clay ternary blends were prepared using styrene–butadiene–styrene, ethylene vinyl acetate and ethylene methylacrylate copolymers mixed with an organomodified montmorillonite. Dynamic mechanical analyses were performed in the extended domain of stress, temperature and frequency to analyse the thermorheological behaviour of the blends. The time–temperature superposition principle was applied to shift the experimental data recorded at different temperatures and generate master curves of the linear viscoelastic functions. For all blends, the mechanical response of the system was found to be strongly and intimately influenced by the nanocomposite modification. In some cases, a solid-like behaviour appears and delays the Newtonian transition. Morphological analyses performed with fluorescence microscopy allowed to associate the binder properties with the presence of clay silicates, which alter the colloidal equilibrium of the bitumen and enhances the compatibility between bitumen and polymers. Based on the morphological and rheological results, a structural model of the prepared blends is proposed.  相似文献   

3.
胶粉改性沥青混合料是一种典型的粘弹性材料,具有很好的抗高温和抗低温开裂性能.由于利用了废旧橡胶轮胎对于减少黑色污染,发展循环经济和保护环境,具有重要意义.通过配合比相同的胶粉改性沥青和SBS改性沥青混合料的弯曲蠕变对比试验,研究了在-15℃、0℃、15℃、30℃和45℃下两种沥青混合料粘弹特性.得出胶粉改性沥青和SBS...  相似文献   

4.
A study using dynamic mechanical analysis (DMA) and stress rheometry was done on the viscoelastic properties of different bitumen-filler blends disposed to de-icing agents. The blends were mixtures of the same bitumen, B200 (B), and four different filler grades, limestone (L) filler, Oulu (O) stone (mica-gneiss with high biotite amount), Rovaniemi (R) stone (diabase) and Hietavaara (H) stone (diabase). The de-icing agents tested were water, formic acid, potassium acetate (KAc) and potassium formate (KFo). From the DMA measurements, the elastic modulus (stiffness) at −25 °C, the glass transition temperature (T g) of the bitumen phase, and the softening temperature were measured. The stiffness data at −25 °C proposed that all agents seem to decrease the stiffness levels of the B-O blend with biotite to a larger extent. Formic acid and 50% potassium formates significantly decreased the stiffness level of the B-L blend. The stiffness of B-H blends was not affected by the chemical treatment. A plasticizing effect of water, formic acid, and 5% potassium acetate, was found for the B-L blend. From the changes in the softening temperatures in the temperature range 15–28 °C, it was concluded that chemical treatment may have an increasing effect on the softening temperatures of all blends, although the effect of hardening could not be omitted. Oscillatory flow measurements with a shear stress rheometer demonstrated that the viscosities of the blends increased significantly after the immersion in de-icing agents.  相似文献   

5.
Attempts have been made for the first time to prepare a friction material with the characteristic of thermal sensitive modulus, by the inclusion of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation in order to the increase the damping behavior of the cured friction material. Styrene–butadiene–styrene (SBS), styrene–ethylene–butylene–styrene (SEBS) and nitrile rubber/polyvinyl chloride (NBR/PVC) blend system were used as TPE materials. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and storage modulus (E′) for the friction material, dynamic mechanical analyzer (DMA) were used. Natural frequencies and mode shapes of friction material and brake disc were determined by modal analysis. However, NBR/PVC and SEBS were found to be much more effective in damping behavior. The results from this comparative study suggest that the damping characteristics of commercial friction materials can be strongly affected by the TPE ingredients. This investigation also confirmed that the specimens with high TPE content had low noise propensity.  相似文献   

6.
The article describes the effect of hydrocarbon (HC) and coumarone-indene (CI) resin tackifiers on autohesion behavior of ethylene propylene diene polymethylene (EPDM) rubber. The viscoelastic behavior and nature of compatibility of EPDM/tackifier blends were studied by means of dynamic mechanical analysis. Furthermore, scanning electron microscopy and atomic force microscopy were used to understand the compatibility of the EPDM/tackifier blends. The HC tackifying resin modified the viscoelastic properties of the EPDM rubber in such a way that it behaved as a plasticizer at lower frequency by reducing the storage modulus and filler at higher frequency by increasing the storage modulus. On the contrary, the CI modified EPDM rubber did not show similar behavior; the modulus enhanced throughout the entire frequency range. The viscosity of the matrix was found to be highly governed by the compatibility as well as amount of tackifier present in the blend. In order to explain the tack behavior, several tack governing factors such as green strength, creep compliance, entanglement molecular weight, relaxation time, self-diffusion coefficient, and monomer friction coefficient (ζ0) were investigated. The tack strength increased with HC tackifier loading up to 24 parts per hundred grams of rubber (phr), beyond which a plateau region was observed. A maximum of 196% improvement was observed at 24 phr HC loaded sample as compared to gum EPDM rubber devoid of tackifier. Conversely, there was a marginal improvement of tack strength (36%) up to 8 phr loading for the system containing CI, beyond which it dropped.  相似文献   

7.
Polymer additives are used to improve the properties of road bitumens including their oxidative resistance. However, their usage as anti-oxidative materials remains relatively unclear. This study aims to investigate the changes in the morphology and the rheological response of polymer modified bitumens used in road pavement construction caused by ageing. An elastomer (radial styrene butadiene styrene, SBS) and a plastomer (ethyl vinyl acetate, EVA) polymer were mixed with one base bitumen at three polymer concentrations. The bitumens were RTFO and PAV aged. The morphology of the bitumens was captured by fluorescence microscopy while the rheological properties were measured by means of the multiple stress creep and recovery (MSCR) test. The results show that the morphology of the SBS modified bitumen degrades with ageing as a function of polymer concentration and dispersion, with higher dispersion being more resistant. The morphology of the EVA modified bitumen has a low ageing susceptibility irrespective of polymer concentration. The MSCR response of EVA modified bitumens does not differ from that found for unmodified bitumen, where the hardening produces a decrease in the non-recoverable compliance. In the case of SBS modified bitumen, the degradation of the polymer backbone affects the bitumen hardening as much as the polymer phase dispersed and networked in the bitumen phase. Furthermore, in the case of the elastomer, the average percent recovery is in agreement with the variation of the morphology with ageing. Therefore, the use of the average percent recovery as a valuable rheological index of the integrity of the polymer network can be advocated.  相似文献   

8.
Nowadays, the use of recycled waste materials as modifier additives in asphalt mixes could have several economic and environmental benefits. The main purpose of this research was to investigate the effect of waste plastic bottles (Polyethylene Terephthalate (PET)) on the stiffness and specially fatigue properties of asphalt mixes at two different temperatures of 5 and 20 °C. Likewise, the effect of PET was compared to styrene butadiene styrene (SBS) which is a conventional polymer additive which has been vastly used to modify asphalt mixes. Different PET contents (2–10% by weight of bitumen) were added directly to mixture as the method of dry process. Then the resilient modulus and fatigue tests were performed on cylindrical specimens with indirect tensile loading procedure. Overall, the mix stiffness reduced by increasing the PET content. Although stiffness of asphalt mix initially increased by adding lower amount of PET. Based on the results of resilient modulus test, the stiffness of PET modified mix was acceptable and warranted the proper deformation characteristics of these mixes at heavy loading conditions. At both temperatures, PET improved the fatigue behavior of studied mixes. PET modified mixes revealed comparable stiffness and fatigue behavior to SBS at 20 °C. However, at 5 °C the fatigue life of SBS modified mixes was to some extent higher than that of PET modified ones especially at higher strain levels of 200 microstrain.  相似文献   

9.
Polymer-modified bitumen (PMB) has been increasingly used to enhance pavement performance. Two styrenebutadiene-styrene (SBS) copolymers were mixed with two bitumens by weight of the blend. This paper aims at developing the procedure to determine the proper polymer content to be mixed with bitumen. Tests including storage stability test, dynamic shear rheometer and scanning electron microscopy (SEM) were conducted to investigate the viscoelastic properties and microstructures of PMB. The addition of polymers increased the viscosity, softening point, toughness and complex modulus of bitumens. SEM results indicated that, as the polymer content increased, SBS gradually became the dominant phase that resulted in an increase in PMB's mechanic properties. Good compatibility produced an elastic network into the PMB up to 6% polymer concentration. The optimum polymer content was determined based on the rheological properties and the formation of the critical network. Adding higher polymer contents could lead to the separation of polymer and bitumen. The softening point temperature difference between top and bottom samples should be controlled within 2°C to monitor PMB's stability.  相似文献   

10.
Dynamic vulcanizate blends of polypropylene (PP) and ethylene–propylene-diene rubber (EPDM) were filled with 5 wt% of micro-scale ceramic powder. To overcome the difficulty of particles dispersion and adhesion, the filler was modified through grafting using three kinds of organic molecules. A combination of Raman data with thermogravimetric analysis (TGA) results prove that grafting of organic macromolecules onto ceramic surfaces takes place. Dynamic mechanical analysis (DMA) has been performed from −100 to +50 °C; addition of the ceramic increases the storage modulus E′, more so for modified filler. Compared to PP and thermoplastic vulcanizate (TPV), a higher thermal expansion is seen after addition of the ceramic filler, a result of creation of more free volume. The tensile modulus of the composites is about 1.2 times that of pure TPV, an increase in the rigidity clearly caused by the ceramic. Fracture surfaces show weak bonding of filler particles to the matrix. In the sample containing modified filler the tensile deformation is going through the polymer matrix. The brittleness, B, decreases upon surface modification of the ceramic. The highest value of B is seen for the PP + unmodified ceramic while lower B values are obtained for TPV and its composites.  相似文献   

11.
Epoxy syntactic foams that are capable of withstanding use-temperatures in the range of 106 to 175°C were fabricated with DGEBA or novolac based epoxy resins and appropriate amine hardener materials. These foams were characterized for dynamic mechanical properties in single cantilever mode. The storage modulus, loss modulus and tan δ values were recorded over a wide temperature range. A typical density value of around 0.45 g/cm3 of the syntactic foams made respectively from a cycloaliphatic amine hardener, aromatic amine hardener-I, aromatic amine hardener-II recorded storage modulus (E′) values of 1354 MPa, 1500 MPa and 1530 MPa respectively and tan δ values of 0.0139, 0.0090, 0.01039 respectively at 30°C. The storage modulus values gradually decreased with increasing temperature while the loss modulus values showed corresponding gradual increase in the same temperature range. There is a steep variation in these values when the material softens in the vicinity of the glass transition temperature (T g) indicating the upper temperature limits to which they can be put in use. The reduction in the storage modulus values with increasing temperature and the glass transition temperature values are characteristic of the resin/hardener systems as well as the curing/post curing cycles employed.  相似文献   

12.
The aim of this work is to establish a multi-scale modelling technique usable in the study of the complex viscoelastic properties of asphalt mixes. This technique is based on a biphasic approach. At each scale, the heterogeneous media is considered as a two-phase material composed of granular inclusions with linear elastic properties and a matrix of bituminous materials exhibiting linear viscoelastic behaviour at small strain values. In this approach, the homogeneous equivalent properties of biphasic composites are transferred from one scale of observation to the next, higher scale of observation. The viscoelastic properties of the matrix and the elastic properties of the aggregates serve as the input parameters for the numerical models. The generalised Maxwell rheological model is used to describe the viscoelastic behaviour of the matrix. Thanks to the rheological properties of bitumen and the elastic properties of the aggregates, the viscoelastic properties of mastic, mortar and hot mix asphalt (HMA) as bituminous composites can be, respectively, estimated using a micromechanical finite element model. Random inclusions of varying sizes and shapes are generated in order to construct the granular skeleton. A cyclic loading was imposed on the top layer of the digital model. The dynamic modulus of the pre-cited bituminous composites, obtained from the presented multi-scale modelling process while passing from the bitumen to the HMA scale, is validated by comparison with experimental measurements when possible. Concerning our results, we have found that at low temperature (?10 °C), the predicted dynamic modulus is satisfactorily comparable to the experimental measurements. On the other hand, an acceptable gap between predicted numerical results and experimental data takes place when the temperature increases.  相似文献   

13.
Differential scanning calorimetric (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) of the blends of cycloaliphatic epoxy (CAE) resin toughened with liquid elastomer such as carboxyl terminated butadiene acrylonitrile copolymer (CTBN) have been carried out. Exothermal heat of reaction due to cross linking of the resin in the presence of diamino diphenyl sulphone (DDS, an amine hardener) showed a decreasing trend with increasing rubber concentration. Enhancement of thermal stability as well as lower mass loss of the epoxy-rubber blends with increasing rubber concentration have been observed in thermogravimetric analysis (TGA). Dynamic mechanical properties reflected a monotonic decrease in the storage modulus (E′) with increasing rubber concentration. The loss modulus (E″) and the loss tangent (tan δ) values, however, showed an increasing trend with rise of temperature up to a maximum (peak) followed by a gradual fall in both cases.  相似文献   

14.
基于分数阶黏弹性模型的温拌改性沥青低温性能   总被引:1,自引:0,他引:1       下载免费PDF全文
宋云连  张扬  吕鹏 《复合材料学报》2018,35(8):2140-2148
基于分数阶黏弹性模型,通过低温弯曲梁流变试验(BBR)分析RH和Evotherm温拌剂对苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)改性沥青低温性能的影响。结果表明:利用BBR试验数据拟合出的分数阶黏弹性模型参数可较好地预估温拌改性沥青的蠕变柔量和蠕变速率; RH温拌剂可以提高SBS改性沥青的阻尼比和耗散能比,但Evotherm温拌剂在低于-18℃时不能够提高;因7种沥青按照阻尼比和耗散能比排序相同,故也可以将阻尼比作为温拌改性沥青低温性能的一种评价指标; RH可以改善沥青的蠕变柔量,提高黏性流动柔量,且掺量越高改善效果越好,但不能提高黏弹性比,故不能用黏弹性比评价温拌SBS改性沥青的低温性能,而Evotherm温拌剂的规律性不强;两种温拌剂都在低于-24℃时对SBS改性沥青的低温性能改善不佳。  相似文献   

15.
王岚  王子豪  李超 《复合材料学报》2017,34(7):1610-1616
基于动态剪切流变(DSR)试验,对老化前后三种改性沥青:多聚磷酸(PPA)改性沥青、苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)改性沥青及SBS-PPA复合改性沥青的高温性能进行分析。结果表明:在不同温度及老化作用下,与SBS改性沥青相比,PPA改性剂对沥青高温流变性能的改善更为突出,沥青中黏性成分减小,弹性成分增加。在SBS改性沥青中添加PPA可以明显增强改性沥青的弹性,降低其黏性,SBS-PPA复合改性沥青的高温性能优于SBS改性沥青。在长期老化下,PPA和SBS-PPA复合改性沥青中由储存模量G′占主导作用转变为损失模量G″占主导作用的温度转化点都较高,温度转化点:PPASBS-PPASBS。对于SBS改性沥青,温度和频率比老化作用对复数模量G*和相位角δ的影响更大,而PPA和SBS-PPA复合改性沥青受老化影响较大,随着老化程度的加深,可以在较宽的温度和频率范围内保持一定的弹性来抵抗变形。PPA改性沥青在老化前后,不同温度和频率下都具有较高的车辙因子G*/sinδ,且老化后G*/sinδ增加的最多,高温抗车辙能力更强,其次是SBS-PPA复合改性沥青。  相似文献   

16.
The linear viscoelastic behavior of “model” hybrid materials based on methyl methacrylate and methacryloxypropyl-grafted nanosilica was investigated. As unique features, the materials under study present an excellent dispersion of silica within the polymer matrix and are almost free of uncross-linked chains. In addition, very progressive changes in network architecture are available, resulting from changes in particle diameter, d, volume fraction of filler, Φ, number of methacryloyl units grafted per surface unit of silica particle, n, and nature of the grafting agent. The influence of these parameters on the characteristics of the mechanically active relaxations α and β was examined. Emphasis was put on the storage modulus, E′, on the loss modulus, E′′, and on their dependence on filler volume fraction. E′′ values were shown to simply account for the reduction of the mechanical energy lost within the material, in connection to the occurrence of polymer molecular motions. Analysis of E′ variations as a function of Φ was based on the theoretical models available in the literature to account for the contribution of the spherical filler particles. In the glassy state, Kerner’s and Christensen and Lo’s models yielded comparable results. In the rubbery state, Guth and Gold’s model was shown to prevail on Kerner’s model.  相似文献   

17.
Dynamic, creep and static tests were conducted to characterize experimentally the linear elastic and viscoelastic properties of polyether ether ketone (PEEK) as a function of the degree of crystallinity. The semicrystalline polymer was modeled as a two-phase composite material. Values for crystalline modulus and effective crystalline aspect ratios have been extracted from the model. These values together with experimental creep compliance values for amorphous PEEK have been used to predict the creep response for intermediate levels of crystallinity, which compare well with the experimental data. Time-temperature shifting parameters obtained from dynamic mechanical studies compare well with those from creep experiments. At temperatures below 140°C, the shifting parameters were found to be approximately equal for all levels of crystallinity. Prediction for long-term creep has been made from these tests by properly accounting for physical aging phenomenon.  相似文献   

18.
In the experimental study reported in this paper a creep-recovery shear test method was used to evaluate the anti-rutting potential of different polymer-modified bituminous binders. The effects of several factors related to modification were investigated, such as polymer type (SBS, styrene–butadiene–styrene vs. ethylene–vinyl–acetate), composition (styrene content), structure (linear vs. radial SBS) and dosage (3–6 % by weight of the base bitumen). The effect of short-term aging was also considered by comparing binder response before and after treatment with the rolling thin-film oven test. Following previous work on the development of the test protocol, experimental results were analyzed by referring to shear modulus curves G(t) and to permanent compliance (J P), obtained by dividing residual strain at the end of the unloading phase by the stress applied during creep loading. Results indicated the effectiveness of the proposed method in discriminating between the behavior of the different polymer-modified binders and in capturing the effects caused by the factors considered in the investigation. Reliable rankings of the binders were established and were explained by referring to the specific behavior of employed modifiers.  相似文献   

19.
Creep and high strain rate mechanical properties, shrinkage strain, and thermal properties of a bismaleimide neat resin after exposure to a high temperature in air were evaluated and compared with the corresponding properties for a pristine resin. Under tension at a strain rate of 6×10?4 s?1, the Young’s modulus decreases and Poisson’s ratio increases with temperature, measured up to 310 °C. The tensile creep behavior was determined at stress levels of 12, 24, and 33 MPa at elevated temperatures. At each stress level, the creep compliance curves at different temperatures were shifted horizontally to form a master curve. These creep compliance master curves are nearly identical, indicating a linearly viscoelastic behavior up to 33 MPa. The bismaleimide resin was also exposed to air at other temperatures of 245, 260, and 280 °C for 1500 hours. After exposure to a high temperature, three regimes were observed in the resin through optical micrographs: an outer layer showing darker color, an interior that nearly maintained its original color, and a transition (or reacting) region in between. The average shrinkage on surface was determined as 3.4 % strain after 1500 hours of exposure to 260 °C in air. Compression at a high strain rate using a long split Hopkinson pressure bar shows that the bulk bismaleimide resin is rather insensitive to the exposure to a high temperature, exhibiting only a slight reduction in mechanical properties after 1500 hours of exposure to 245 °C. The uniaxial creep compliance of the neat resin was converted into the Young’s relaxation modulus, which was then used to calculate the Young’s modulus under tension at the strain rate and temperatures involved, and a good agreement was achieved between the calculated results and the experimental data, indicating that the rate-dependent Young’s modulus is the representation of viscoelastic properties.  相似文献   

20.
介绍了近年来建立粘弹性材料本构模型的方法。目前主要有两种方法:利用现有本构模型;对粘弹性材料进行试验研究,拟合实验曲线。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号