首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was designed to investigate the effect of mercuric chloride administration on copper, zinc, and iron concentrations in the liver, kidney, lung, heart, spleen, and muscle of rats. The results showed that after dose and time exposure to mercuric chloride, the concentration of mercury in the six tissues was significantly elevated. Data showed that there were no interaction between mercury and tissue iron. There was a considerable elevation of the content of copper in the kidney and liver. The most significant changes in the copper concentration took place in the kidneys. About a twofold increase in the copper content of the kidney was noted after exposure to mercuric chloride (3 mg and 5 mg/kg). Only slight elevations in the copper content occurred in the liver especially in high dose and longer exposure time. In the remaining organs, the copper content was not changed significantly (p > 0.05). The most significant changes in the zinc concentration took place in liver, kidney, lung and heart (5 mg/kg). Marked changes in kidney zinc concentrations were observed at any of the specified doses. Zinc concentrations were significantly increased in kidney of rats sacrificed 9-48 h after s.c. injection of HgCl2 (5 mg/kg); in liver obtained from rats at 18, 24 or 48 h after injection; and in lung after 24 or 48 h of treatment. The heart and spleen zinc concentrations were elevated at 24 and 48 h after injection of HgCl2 (5 mg/kg), respectively. The results of this study implicate that effects on copper and zinc concentrations of the target tissues of mercury may play an important role in the pathogenesis of acute mercuric chloride intoxication.  相似文献   

2.
Current views on the pathogenesis of Parkinson's disease are presented. Studies, particularly those carried out during the last decade, highlight the significance of endogenic processes responsible for a cumulative production of neurotoxic substances, especially free oxygen radicals which exert chronic effect on neurons. In Parkinson's disease, overproduction of free radicals and concomitant failure of protective mechanisms are most likely. An excess of free radicals is cytotoxic because of their very high chemical activity and uncontrolled chain reactions with numerous organic compounds, especially those which are mostly responsible for vital functions of cells. Oxidative stress disturbs metabolism of the cell what finally leads to its death most probably due to damage of cell membrane. That results in increased plasma membrane permeability for calcium ions which activate several subcellular mechanisms and initiate the final phase of cell death. Nonprotein-bound "free" iron ions are the strongest and most dangerous generators of free oxygen radicals. It is thought that ferric (Fe-3+" iron bound to neuromelanin may play a profound role in the overproduction of especially cytotoxic hydroxyl radicals, derivatives of molecular oxygen. Both, oxygen stress inducing factor and the sequence of related biochemical disorders remain still unknown. However, the synergy of the excess of reactive oxygen metabolites (mainly free radicals), nitric oxide, "free" iron ions and neuromelanin may contribute considerably to the generation of oxygen stress.  相似文献   

3.
We have previously shown, using qualitative approaches, that oligodendroglial precursors are more readily damaged by free radicals than are astrocytes. In the present investigation we quantified the oxidative stress experienced by the cells using oxidation of dichlorofluorescin diacetate to dichlorofluorescein as a measure of oxidative stress; furthermore, we have delineated the physiological bases of the difference in susceptibility to oxidative stress found between oligodendroglial precursors and astrocytes. We demonstrate that (a) oligodendroglial precursors under normal culture conditions are under six times as much oxidative stress as astrocytes, (b) oxidative stress experienced by oligodendroglial precursors increases sixfold when exposed to 140 mW/m2 of blue light, whereas astrocytic oxidative stress only doubles, (c) astrocytes have a three times higher concentration of GSH than oligodendroglial precursors, (d) oligodendroglial precursors have > 20 times higher iron content than do astrocytes, and (e) oxidative stress in oligodendroglial precursors can be prevented either by chelating intracellular free iron or by raising intracellular GSH levels to astrocytic values. We conclude that GSH plays a central role in preventing free radical-mediated damage in glia.  相似文献   

4.
This article reviews the literature data concerning the immunologic monitoring of animals and cell cultures exposed to mercury compounds. Mercury is present in nature as metallic mercury, mono- and bivalent inorganic compounds, and organic alkyl, aryl and alloxy-alkyl compounds. Methylmercury is most important in terms of environmental exposure while metallic mercury is the most common form to which workers are exposed. The database on immune function disturbances in human induced by mercury compounds is limited. Immunotoxicity assessment in animals, mainly in rodents, with subsequent extrapolation to man, is the basis of human risk assessment. The strength of in vitro immunotoxicity testing lies in studies aimed at unravelling mechanisms of immunotoxicity. These experimental investigations show clearly that mercury compounds can have immunomodulating activity. Mercuric chloride and methylmercury inhibit most of animal and human lymphocyte functions including proliferation, expression of cell activation markers on cell surface and cytokine production. These cells exhibit a greater sensitivity to the immunotoxic effects of methylmercury than to mercuric chloride. Repeated administration of mercuric chloride to rats, mice and rabbits can induce autoimmune response and a membranous nephropathy. In contrast, Lewis rats injected with mercuric chloride do not develop autoimmunity but exhibit immunosuppression. The immunosuppressive effects associated with exposure to chemical substances are often accompanied by increased susceptibility to challenge with infectious agents or tumour cells. Only few reports are available on animal studies of increased mortality connected with exposure to mercury compounds and challenge with infectious agents. It is difficult to establish a relationship between the observed immunomodulatory properties of mercury compounds and their possible carcinogenicity. In fact, the epidemiological studies performed so far failed to bring any conclusive evidence of carcinogenicity of mercury in animal experiments. The induction of renal tumours in male rodents by methylmercury was observed only.  相似文献   

5.
Using the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone, we have detected a lipid-derived carbon-centered free radical generated from intact L1210 lymphoblastic leukemia cells that were exposed to 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine or ET-18-OCH3) and oxidative stress. The spectral characteristics, including hyperfine splitting constants of aN = 15.61G and aH = 2.65G, were consistent with the spin trapping of an alkyl radical. Radical detection required iron and prior enrichment of cellular components with the polyunsaturated fatty acid docosahexaenoic acid; unmodified cells failed to generate detectable free radical. Ascorbate further enhanced radical generation. The detection of lipid-derived free radicals when intact cells are exposed to edelfosine provides further evidence that oxidative stress may play an important role in the cytotoxic mechanism of this class of anticancer drug.  相似文献   

6.
The brain is susceptible to oxidative stress. This is due to the high content of polyunsaturated fatty acids, high rate of oxygen consumption, regional high concentrations of iron, and relatively low antioxidant capacity. These factors may predispose the premature infant to brain damage. Brain damage may be due to: 1. Brief anoxia followed by hyperoxia (mimics parturition oxidative stress); or 2. Prolonged exposure to hyperoxia (mimics oxidative stress from postpartum maintenance in a hyperoxic environment). We have developed two animal models to examine these forms of oxidative stress on the brains of rats. In Model I rats were exposed to brief anoxic anoxia (100% N2) followed by hyperoxia (100% O2). Using T2-weighted Magnetic Resonance Imaging (MRI) brain intensity decreased following the treatment suggesting water loss or free radical production. In vivo 1H-NMR showed brain water content appeared to increase, however variability rendered this result insignificant. Electron spin resonance (ESR) spin trapping, using a-phenyl-N-tert-butylnitrone (PBN) produced a free radical signal from the anoxic-anoxia hyperoxia treated animals which suggests the decrease in MRI T2-weighted image signal intensity was due to free radicals. In Model II, we examined the effects of prolonged normobaric hyperoxia (85% O2) on blood-brain barrier (BBB) integrity and brain phosphorous metabolism. BBB permeability increased following 1 week of hyperoxia. In addition, measurement of high energy phosphates, using in vivo 31P-NMR, showed the PCr/ATP ratio significantly decreased, the ATP/Pi ratio increased and the (ATP+PCr)/Pi ratio increased. Because the BBB is sensitive to oxidative stress its loss of integrity may be due to free radicals. The level of oxidative stress may result in brain elevation of ATP as an adaptation mechanism. In conclusion, anoxic-anoxia and prolonged hyperoxia exposure produce MRI visible changes in the brain. These two mechanisms may be important in the etiology of brain damage observed in many premature infants.  相似文献   

7.
In the present study the effect of ascorbate (0.8 mM)/iron (2.5 microM) on lipid and protein oxidation, in Synaptosomes isolated from rat brain cortex, was evaluated. Vitamin E, idebenone and reduced glutathione were used as free radicals scavengers, in order to analyze the mechanism involved in ascorbate/iron-induced oxidative stress. An increased formation of reactive oxygen species (ROS) in the cytosol and in the mitochondria was observed, in ascorbate/iron treated synaptosomes. Idebenone (50 microM) prevented the increased formation of ROS in both synaptosomal compartments, vitamin E (150 microM) protected partially this formation in mitochondria, whereas reduced glutathione (250 microM) (GSH) was ineffective. After ascorbate/iron treatment an increase in lipid peroxidation occurred as compared to control, which was completely inhibited by idebenone. A decrease in protein-SH content was also observed, and it was prevented by Vitamin E, idebenone and GSH. When synaptosomes were treated with ascorbate/iron the levels of GSH decreased, and the levels of oxidized glutathione (GSSG) increased as compared to controls under these conditions. Glutathione peroxidase activity was unchanged, whereas an inhibition of glutathione reductase activity was observed. These data suggest that the increased formation of free radicals in synaptosomes leads to lipid and protein oxidation, the role of the endogenous GSH being essential to protect protein thiol-groups against oxidative damage in order to maintain enzyme activity.  相似文献   

8.
Free radicals are normally produced as a by-product of cellular metabolism. Free radicals are capable of killing bacteria, damage biomolecules, provoke immune response, activate oncogens, cause atherogenesis and enhance ageing process. However, in healthy conditions nature has endowed human body with enormous antioxidant potential. Subtle balance exists between free radical generation and antioxidant defence system to cope with oxidative stress by various enzymes and vitamins at cellular level which prevent the occurrence of disease. However, factors tilting the balance in favour of excess free radicals generation lead to widespread oxidative tissue damage and diseases. Therefore, trouble starts when there is an excess of free radicals and the defence mechanism lags behind. Overwhelming production of free radicals in response to exposure to toxic chemicals and ageing may necessitate judicious antioxidant supplement to help alleviate free radical mediated damage.  相似文献   

9.
Detailed respiration studies on isolated liver mitochondria from streptozotocin-induced diabetic Sprague-Dawley rats revealed a disease-associated decrease in the ADP/O ratio, a marker for mitochondrial ability to couple the consumption of oxygen to the phosphorylation of ADP. This decrease was observed following induction of respiration with glutamate/malate, succinate, or duroquinol, which enter the electron transport chain selectively at complexes I (NADH dehydrogenase), II (succinate dehydrogenase), or III (cytochrome bc1 complex), respectively. These data, coupled with studies using respiratory inhibitors (most importantly antimycin A and myxothiazol), localize at least a portion of this defect to a single site within the electron transport chain (center P in the Q-cycle portion of complex III). These results suggest that liver mitochondria from diabetic animals may generate increased levels of reactive oxygen species at the portion of the electron transport chain already established as the major site of mitochondrial free radical generation. The reduction in the ADP/O ratio occurred in mitochondria that do not have overt defects in the respiratory control ratio or in State 3 and State 4 respiration. The data in this paper suggest that defects in center P of the electron transport chain likely increase mitochondrial exposure to oxidants in the diabetic. This data may partially explain the evidence of altered exposure and/or response to reactive species in mitochondria from diabetics. This work thus provides further clues to the interaction between oxidative stress and diabetes-associated mitochondrial dysfunction.  相似文献   

10.
Alkalosis is a clinical complication resulting from various pathological and physiological conditions. Although it is well established that reducing the cellular proton concentration is lethal, the mechanism leading to cell death is unknown. Mitochondrial respiration generates a proton gradient and superoxide radicals, suggesting a possible link between oxidative stress, mitochondrial integrity, and alkaline-induced cell death. Manganese superoxide dismutase removes superoxide radicals in mitochondria, and thus protects mitochondria from oxidative injury. Cells cultured under alkaline conditions were found to exhibit elevated levels of mitochondrial membrane potential, reactive oxygen species, and calcium which was accompanied by mitochondrial damage, DNA fragmentation, and cell death. Overexpression of manganese superoxide dismutase reduced the levels of intracellular reactive oxygen species and calcium, restored mitochondrial transmembrane potential, and prevented cell death. The results suggest that mitochondria are the primary target for alkaline-induced cell death and that free radical generation is an important and early event conveying cell death signals under alkaline conditions.  相似文献   

11.
Free radicals are, on the one hand, necessary for the physiological function of some systems but, on the other had, they play an important pathologic role. The formation of free radicals can be the result of various conditions and can initiate various diseases. Their formation may also be a consequence of certain pathological state of the organism. In this way generated free radicals can cause in the secondary to the damage organism. The metabolism of free radicals is significantly influenced by transition metals. These metals are present in the organism at given oxidative state chelated in the proteins. In this form the metalloproteins to have unique catalytical and redox properties. The transition metals are a part of an active centre of many enzymes. Iron and copper are the predominant transition metals in human organism. These metals are vitally important, but if present in high concentration, in unsuitable oxidative state and at improper site, they can catalyse the formation of highly toxic reactive metabolities of oxygen, for example hydroxyl radicals. The toxic damage may be direct if the metals are present in high oxidative state Fe(IV) or Fe(V). These "ferryl" compounds are strong prooxidants. The organism maintains the iron metabolism in equilibrium. If the iron plasma concentration reaches 40 micro-mol/L, it is a sign, that iron is released from physiological protein structures and forms so called "catalytically active iron". In this form iron can be involved in Fenton reaction in which hydroxyl radical is formed. The article discussed the toxic effect of "catalytically" active iron at a given oxidative state with its influence on some diseases.  相似文献   

12.
The mitochondrial protein SP-22 has recently been reported to be a member of the thioredoxin-dependent peroxide reductase family, suggesting that it may be one of the antioxidant systems in mitochondria, which are the major site of reactive oxygen intermediate generation. The aim of this study was to examine whether SP-22 is involved in mitochondrial antioxidant mechanisms and whether its expression is induced by oxidative stresses, particularly those in mitochondria. The expression of SP-22 protein was enhanced by about 1.5-4.6-fold when bovine aortic endothelial cells (BAEC) were exposed to various oxidative stresses, including mitochondrial respiratory inhibitors which increased the superoxide generation in BAEC mitochondria. The expression of SP-22 mRNA increased 2.0-3.5-fold with a peak at 3-6 h after exposure to Fe2+/dithiothreitol or a respiratory inhibitor, antimycin A. BAEC with an increased level of SP-22 protein caused by pretreatment with mild oxidative stress became tolerant to subsequent intense oxidative stress. On the other hand, BAEC that had been depleted of SP-22 with an antisense oligodeoxynucleotide against SP-22 mRNA became more labile to oxidative stress than control BAEC. The induction of SP-22 protein by oxidative stress in vivo was demonstrated in an experimental model of myocardial infarction in rat heart. These findings indicate that SP-22 functions as an antioxidant in mitochondria of the cardiovascular system.  相似文献   

13.
Reduced porphyrins (hexahydroporphyrins, porphyrinogens) are readily oxidized in vitro by free radicals which are known to mediate oxidative stress in tissue cells. To determine if increased urinary porphyrin concentrations may reflect oxidative stress to the kidney in vivo, we measured the urinary porphyrin content of rats treated with mercury as methyl mercury hydroxide (MMH) or cephaloridine, both nephrotoxic, oxidative stress-inducing agents. Rats exposed to MMH at 5 ppm in the drinking water for 4 weeks showed a 4-fold increase in 24-hr total urinary porphyrin content and a 1.3-fold increase in urinary malondialdehyde (MDA), an established measure of oxidative stress in vivo. Treatment with cephaloridine alone (10-500 mg/kg, i.p.) produced a dose-related increase in urinary MDA and total porphyrin levels up to 1.6 and 7 times control values, respectively. Injection of MMH-treated rats with cephaloridine (500 mg/kg) caused a synergistic (20-fold) increase in urinary porphyrin levels, but an additive (1.9-fold) increase in the MDA concentration. Studies in vitro demonstrated that cephaloridine stimulated the iron-catalyzed H2O2-dependent oxidation of porphyrinogens to porphyrins in the absence of either microsomes or mitochondria. Additionally, porphyrinogens were oxidized to porphyrins in an iron-dependent microsomal lipid peroxidation system. Moreover, porphyrinogens served as an effective antioxidant (EC50 approximately 1-2 microM) to lipid peroxidation. These results demonstrate that MMH and cephaloridine synergistically, as well as individually, promote increased oxidation of reduced porphyrins in the kidney and that this action may be mechanistically linked to oxidative stress elicited by these chemicals. Increased urinary porphyrin levels may, therefore, represent a sensitive indicator of oxidative stress in the kidney in vivo.  相似文献   

14.
The concentration of mercury in milk and the distribution pattern in the sucking pup was followed over time after administration of a single iv injection of 0.5 mg/kg body wt of 203Hg-labeled methylmercuric chloride or mercuric chloride to lactating mice on Day 10 of lactation. Mercury concentrations in milk of the dams and in whole body, blood, plasma, GI-tract, liver, kidneys, and brain of the offspring were followed up to 11 days after dosing (until lactational Day 21). Following the inorganic mercury dose to the dams, most of the mercury in milk was delivered to the pups during the first 24 h, but the maximum mercury concentration in plasma and tissues of pups was not reached until 7 days after dosing, indicating a prolonged absorption of inorganic mercury in the sucking pup. Pups of dams given methylmercury were exposed to a much lower and constant mercury concentration in milk. The estimated accumulated mercury dose via milk per pup of dams given methylmercury was less than half of that estimated after the inorganic mercury dose. When the accumulated dose via milk from methylmercury-exposed dams was compared to the amount of mercury in pup's carcass (whole body minus GI-tract including content), it was revealed that almost all mercury delivered via milk was absorbed, and that the suckling pups had a very low elimination of mercury until lactational Day 17. Lactational exposure following a maternal methylmercury or inorganic mercury dose resulted in almost similar mercury concentrations in liver, kidneys, and plasma of the suckling, but higher concentrations in brain (as most 14 times) and also twice as high mercury body burden in the methylmercury group. Thus, differences in kinetics indicate that lactational exposure of methylmercury is a greater hazard for the breast-fed infant than inorganic mercury.  相似文献   

15.
A high-shear blending technique for converting large volumes of elemental mercury into mercuric sulfides has been evaluated. The two basic forms of mercuric sulfide (cinnabar and metacinnabar) were prepared by triturating stoichiometric ratios of elemental mercury and sulfur. X-ray analysis and scanning electron microscope techniques confirm the existence of both forms of mercuric sulfide. These sulfides passed the Toxicity Characteristic Leaching Procedure test for mercury vapor-phase requirements and thus meet waste acceptance criteria for handling∕storage of low-level radioactively contaminated mercury. Black mercuric sulfide (metacinnabar) is the recommended target product in the conversion of mercury to mercuric sulfide, because it is easier and safer to produce. Zinc-mercury amalgams were also prepared and compared with the sulfides in terms of meeting processing and storage requirements for mercury mixed waste. Mercury loading for both forms of mercuric sulfide is significantly higher than mercury loading in a typical transition metal amalgam.  相似文献   

16.
Previous studies have shown that a variety of mammalian cell types, including macrophages, contain small amounts of redox-active iron in their lysosomes. Increases in the level of this iron pool predispose the cell to oxidative stress. Limiting the availability of intralysosomal redox-active iron could therefore represent potential cytoprotection for cells under oxidative stress. In the present study we have shown that an initial 6 h exposure of J774 macrophages to 30 microM iron, added to the culture medium as FeCl3, increased the lysosomal iron content and their sensitivity to H2O2-induced (0.25 mM for 30 min) oxidative stress. Over time (24-72 h), however, the cells were desensitized to the cytotoxic effects of H2O2; most likely as a consequence of both lysosomal iron exocytosis and of ferritin synthesis (demonstrated by atomic absorption spectrophotometry, autometallography, and immunohistochemistry). When the cells were exposed to a second dose of iron, their lysosomal content of iron increased again but the cells became no further sensitized to the cytotoxic effects of H2O2. Using the lysosomotropic weak base, acridine orange, we demonstrated that after the second exposure to iron and H2O2, lysosomes remained intact and were no different from control cells which were exposed to H2O2 but not iron. These data suggest that the initial induction of ferritin synthesis leads to enrichment of lysosomes with ferritin via autophagocytosis. This limits the redox-availability of intralysosomal iron and, in turn, decreases the cells' sensitivity to oxidative stress. These in vitro observations could also explain why cells under pathological conditions, such as haemochromatosis, are apparently able to withstand high iron concentrations for some time in vivo.  相似文献   

17.
Oxidative stress has many effects on biological cells, including the modulation of gene expression. Reactive oxygen species are known to up-regulate and down-regulate RNA expression in prokaryotic and eukaryotic cells. We have previously reported that a preferential and calcium-dependent down-regulation of mitochondrial RNAs occurs when HA-1 hamster fibroblasts are exposed to hydrogen peroxide. Here we extend these studies to determine whether this down-regulation is specific to mitochondria RNA or involves general polynucleotide degradation. Degradation and associated decreases in the levels of 16S mitochondrial rRNA following exposure of cells to 400 microM hydrogen peroxide were found to be dependent on calcium at 2 and 5 h. Degradation of mitochondrial genomic DNA was also observed following peroxide exposure, and occurred at similar time points as for mitochondrial RNA degradation. As with mitochondrial RNA degradation, this mitochondrial genomic DNA degradation was dependent on calcium. These results indicate that there is a general, calcium-dependent degradation of mitochondrial polynucleotides following exposure of HA-1 fibroblasts to oxidative stress, and suggest that a dramatic shut-down in mitochondrial biosynthesis is an early-stage response to oxidative stress.  相似文献   

18.
Although the cause of Parkinson's disease is unknown, oxidative stress has been implicated in its pathogenesis. This theory postulates that normal metabolic processes in the nigrostriatal dopaminergic system may lead to loss of neurons, and that iron-dependent membrane lipid peroxidation may play an important role in the neuronal death. Recent research concerning iron-dependent lipid peroxidation is presented. First, catechols (including dopa and dopamine) and iron form strong oxidizing complexes and induce lipid peroxidation (LPO) in phospholipid liposomes. Active oxygen species including superoxide, hydrogen peroxide, hydroxyl radical and singlet oxygen, do not participate in this LPO, which is inhibited by an excess of dopa (dopamine). Cultured neurons and the substantia nigra are vulnerable to LPO. Second, synthetic melanin prepared by the autooxidation of catechols promotes LPO in the presence of iron. The effects of scavenging agents indicate that this LPO is mediated by superoxide, but not by other oxygen free radicals. Neuronal cell cultures are destroyed by this LPO. Third, catechols and superoxide produced by microglia cause the release of iron from ferritin. Microglia stimulated by phorbol myristate acetate produce superoxide and cause the release of iron from ferritin. Catechols also induce mobilization of ferritin iron. The released iron (i.e. loosely-bound iron) is available to iron-dependent LPO. These data suggest that the biochemical and morphological characteristics of the substantia nigra, which are concomitant with its functional role, provoke iron-dependent lipid peroxidation. It is essential to elucidate how iron bound loosely to low molecules comes into contact with catechols, neuromelanin and superoxide. Drugs that chelate iron site-specifically or modulate the microglial function may bring about some favorable changes in the disease process.  相似文献   

19.
BACKGROUND: Oxygen radicals have been implicated as important mediators in the early pathogenesis of acute pancreatitis, but the mechanism by which they produce pancreatic tissue injury remains unclear. We have, therefore, investigated the effects of oxygen radicals on isolated rat pancreatic acinar cells as to the ultrastructure, cytosolic Ca2+ concentration and energy metabolism. METHODS: Acinar cells were exposed to an oxygen radical-generating system consisting of xanthine oxidase, hypoxanthine and chelated iron ions. Cell injury was assessed by LDH release and electron microscopy. Cytosolic Ca2+ levels and mitochondrial membrane potential were determined by flow cytometry; adenine nucleotide concentrations by HPLC. Mitochondrial dehydrogenase activity was measured by spectrophotometric assay. RESULTS: Oxygen radicals damaged the plasma membrane as shown by a 6-fold LDH increase in the incubation medium within 180 min. At the ultrastructural level, mitochondria were the most susceptible to oxidative stress. In correlation to the pronounced mitochondrial damage, the mitochondrial dehydrogenase activity declined by 70%, whereas the mitochondrial membrane potential was enhanced by 27% after 120 min. Together this may cause the 85% decrease in the ATP concentration and the corresponding increase in ADP/AMP observed in parallel. In addition, an immediate 26% increase in cytosolic Ca2+ was found, a change which could be inhibited by BAPTA, reducing cellular damage. CONCLUSION: Cytosolic Ca2+ synergizes with oxygen radicals causing alterations of the ultrastructure and energy metabolism of acinar cells which might contribute to the cellular changes found in early stages of acute pancreatitis.  相似文献   

20.
This review summarises the role that reactive oxygen and nitrogen species play in demyelination, such as that occurring in the inflammatory demyelinating disorders multiple sclerosis and Guillain-Barré syndrome. The concentrations of reactive oxygen and nitrogen species (e.g. superoxide, nitric oxide and peroxynitrite) can increase dramatically under conditions such as inflammation, and this can overwhelm the inherent antioxidant defences within lesions. Such oxidative and/or nitrative stress can damage the lipids, proteins and nucleic acids of cells and mitochondria, potentially causing cell death. Oligodendrocytes are more sensitive to oxidative and nitrative stress in vitro than are astrocytes and microglia, seemingly due to a diminished capacity for antioxidant defence, and the presence of raised risk factors, including a high iron content. Oxidative and nitrative stress might therefore result in vivo in selective oligodendrocyte death, and thereby demyelination. The reactive species may also damage the myelin sheath, promoting its attack by macrophages. Damage can occur directly by lipid peroxidation, and indirectly by the activation of proteases and phospholipase A2. Evidence for the existence of oxidative and nitrative stress within inflammatory demyelinating lesions includes the presence of both lipid and protein peroxides, and nitrotyrosine (a marker for peroxynitrite formation). The neurological deficit resulting from experimental autoimmune demyelinating disease has generally been reduced by trial therapies intended to diminish the concentration of reactive oxygen species. However, therapies aimed at diminishing reactive nitrogen species have had a more variable outcome, sometimes exacerbating disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号