首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
《应用化工》2022,(6):1090-1094
研究了茶叶渣对孔雀石绿(MG)的吸附性能、等温吸附模型和吸附动力学。分别考察了吸附时间、pH值、茶叶渣投加量、孔雀石绿初始浓度、温度等因素变化对孔雀石绿吸附效果的影响。结果表明,吸附时间4 h,茶叶投加量2 g/L,中性条件下就能达到较好的孔雀石绿去除效果。茶叶渣对孔雀石绿吸附符合Langmuir、Freundlich、Temkin模型,最大吸附量为79.37 mg/g。吸附动力学符合准一级、准二级动力学模型。茶叶渣对孔雀石绿的吸附是吸热过程。  相似文献   

2.
研究了孔雀石绿(MG)在高岭土上的吸附行为、等温吸附模型和吸附动力学。分别考察了吸附时间、p H值、高岭土投加量、孔雀石绿初始浓度等因素对孔雀石绿去除的影响。结果表明,吸附时间30 min,高岭土投加量16 g/L,中性条件下就能达到较好的孔雀石绿去除效果。高岭土对孔雀石绿吸附符合Langmuir、Freundlich、Temkin模型,最大吸附量为5.37 mg/g。吸附动力学符合准二级动力学模型。  相似文献   

3.
研究了孔雀石绿(MG)在高岭土上的吸附行为、等温吸附模型和吸附动力学。分别考察了吸附时间、p H值、高岭土投加量、孔雀石绿初始浓度等因素对孔雀石绿去除的影响。结果表明,吸附时间30 min,高岭土投加量16 g/L,中性条件下就能达到较好的孔雀石绿去除效果。高岭土对孔雀石绿吸附符合Langmuir、Freundlich、Temkin模型,最大吸附量为5.37 mg/g。吸附动力学符合准二级动力学模型。  相似文献   

4.
制备了羧甲基交联淀粉作为吸附剂,研究了其对孔雀石绿(MG)的吸附性能,进行最佳条件的探讨。考察了吸附接触时间、pH值、交联淀粉的投加量、孔雀石绿的初始染料浓度和不同温度变化对交联淀粉吸附MG的影响,并对吸附等温式和吸附动力学方程等进行了分析。结果表明,高温更利于交联淀粉吸附MG。吸附等温式和吸附动力学过程更符合Freundlich吸附等温式和准二级动力学模型,最大吸附量q_m为769.23 mg/g(298 K)。  相似文献   

5.
6.
茶叶渣对苯酚废水的吸附及再生研究   总被引:1,自引:0,他引:1  
  相似文献   

7.
《应用化工》2022,(11):2001-2005
利用秋季银杏落叶为生物吸附剂,研究了其对孔雀石绿的吸附性能、等温吸附模型和吸附动力学。考察了吸附时间、银杏落叶投加量、p H值、孔雀石绿初始浓度等因素对孔雀石绿吸附的影响。结果表明,吸附平衡时间2 h,银杏落叶投加量4 g/L,中性条件下就能达到较好的孔雀石绿吸附效果。25℃,银杏落叶对孔雀石绿吸附符合Langmuir、Freundlich、Temkin模型,最大吸附量为74.07 mg/g。吸附动力学可用准二级动力学模型更好的描述。  相似文献   

8.
《应用化工》2015,(11):2001-2005
利用秋季银杏落叶为生物吸附剂,研究了其对孔雀石绿的吸附性能、等温吸附模型和吸附动力学。考察了吸附时间、银杏落叶投加量、p H值、孔雀石绿初始浓度等因素对孔雀石绿吸附的影响。结果表明,吸附平衡时间2 h,银杏落叶投加量4 g/L,中性条件下就能达到较好的孔雀石绿吸附效果。25℃,银杏落叶对孔雀石绿吸附符合Langmuir、Freundlich、Temkin模型,最大吸附量为74.07 mg/g。吸附动力学可用准二级动力学模型更好的描述。  相似文献   

9.
采用盐酸浸泡和热处理的方法对香菇菌渣改性后制备吸附剂,研究其对模拟废水中Pb~(2+)的吸附性能,考察了初始浓度、温度、pH、吸附剂投加量和吸附时间5个因素对吸附性能的影响,并研究了改性菌渣吸附剂对Pb~(2+)的等温吸附和吸附动力学特征。结果表明:改性菌渣对Pb~(2+)模拟溶液的最佳吸附条件为:pH=5.0、吸附剂投加量1.6 g/L、初始浓度250 mg/L、温度25℃、吸附时间60min。在该条件下对Pb~(2+)的吸附率可达95.68%,改性菌渣吸附Pb~(2+)的过程符合Langmuir等温模型和准二级吸附动力学模型,吸附速率主要由化学吸附控制。  相似文献   

10.
研究吸附时间、pH、污泥投加量和温度等对厌氧颗粒污泥吸附水中孔雀石绿(MG)的影响.结果表明,在MG初始浓度为50mg/L和60mg/L时,平衡时间为30 min,在MG初始浓度为70 mg/L和80 mg/L时,平衡时间为50 min;在MG初始浓度为100 mg/L时,厌氧颗粒污泥吸附水中MG的最佳pH为6~8,最...  相似文献   

11.
采用Box-Behnken响应曲面优化设计对荔枝皮吸附去除水中染料孔雀绿(MG)的影响因素(如吸附时间、吸附剂用量、pH值)进行研究,建立了去除率和上述因素之间的二次多项式模型,得到荔枝皮吸附孔雀绿的最佳吸附条件为:温度25℃、吸附时间122.31min、吸附剂用量2.81g/L、pH=6.75、MG浓度为100mg/L,最优条件下荔枝皮对孔雀绿的吸附去除率可以达99.75%。用Langmuir和Freundlich方程对吸附等温线进行拟合,其中Langmuir方程拟合效果最好,其最大吸附量为142.86mg/g,且吸附过程符合假二次动力学模型。此外,热力学结果表明,荔枝皮对孔雀绿的吸附属于自发的吸热过程。结合吸附-解吸循环实验和对吸附的FT-IR表征,表明荔枝皮是一种极具潜力的高效的吸附剂,能有效去除水中的孔雀绿离子。  相似文献   

12.
13.
用NaOH对榛壳粉进行化学改性,研制出新型吸附剂SCHFS。未经改性的榛子壳(CHFS)及改性后的榛子壳(SCHFS)用FTIR、SEM进行表征。结果表明,改性后吸附剂表面褶皱、孔隙增多,含氧官能团含量显著增加,这些都有利于吸附的进行。吸附实验结果表明,在实验浓度范围内,SCHFS对亚甲基蓝、孔雀石绿的吸附遵循Langmuir等温吸附模型,R>0.99。SCHFS吸附亚甲基蓝、孔雀石绿的速度非常快,达到平衡的时间分别为30,60 min。SCHFS是一种去除水中亚甲基蓝和孔雀石绿的高效的、新型的、环境友好型吸附剂。  相似文献   

14.
To enhance adsorption of organic dyes like malachite green (MG) onto polymeric absorbents, we prepared carbon nanotube (CNT) filled polyaniline (PANI) composites with large surface areas by simply using entangled CNTs as porous frameworks during PANI polymerization. Adsorption behavior of the CNT/PANI composites in MG solutions was experimentally investigated and theoretically analyzed. The CNT/PANI composites exhibit much higher equilibrium adsorption capacity of 13.95 mg g?1 at an initial MG concentration of 16 mg L?1, increasing by 15% than the neat PANI, which is mainly attributed to large surface areas and strong CNT‐PANI interactions of the composites. In addition, theoretical analyses indicate that the adsorption kinetics and the isothermal process of the composites can be well explained by using the Ho pseudosecond‐order model and the Langmuir model, respectively. In light of their high MG adsorption and easy operation, the CNT/PANI composites have great potential as high‐efficiency adsorbents for removal of dyes from wastewater. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
用NaOH对榛壳粉进行化学改性,研制出新型吸附剂SCHFS。未经改性的榛子壳(CHFS)及改性后的榛子壳(SCHFS)用FTIR、SEM进行表征。结果表明,改性后吸附剂表面褶皱、孔隙增多,含氧官能团含量显著增加,这些都有利于吸附的进行。吸附实验结果表明,在实验浓度范围内,SCHFS对亚甲基蓝、孔雀石绿的吸附遵循Langmuir等温吸附模型,R0.99。SCHFS吸附亚甲基蓝、孔雀石绿的速度非常快,达到平衡的时间分别为30,60 min。SCHFS是一种去除水中亚甲基蓝和孔雀石绿的高效的、新型的、环境友好型吸附剂。  相似文献   

16.
Cadmium hydroxide nanowires loaded on activated carbon (Cd(OH)2-NW-AC) was applied for removal of malachite green (MG) and sunset yellow (SY) in single and binary component systems. This novel material was characterized and identified by different techniques such as Brunauer, Emmett and Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis. Unique properties such as high surface area (>1271 m2 g−1) and low pore size (<35 Å) and average particle size lower than 50 Å in addition to high reactive atom and presence of various functional groups make it possible for efficient removal of these two dyes. In the single component system in this study, maximum adsorption capacity of 80.6 for SY and 19.0 mg g−1 for MG at 25 °C was reported. The Langmuir model had very well fit with the experimental data (R2 > 0.996). A better agreement between the adsorption equilibrium data and mono-component Langmuir isotherm model was found. The kinetics of adsorption for single and binary mixture solutions at different initial dye concentrations were evaluated by the nonlinear first-order and second-order models. The second-order kinetic model had very well fit with the dynamical adsorption behavior of a single dye for lower and higher initial dye concentrations. SY and MG without spectra overlapping were chosen and analyzed with high accuracy in binary solutions. The effect of multi-solute systems on the adsorption capacity was investigated. The isotherm constants for SY and MG were also calculated in binary component systems at concentrations within moderate ranges, the Langmuir isotherm model satisfactorily predicted multi-component adsorption equilibrium data. The competitive adsorption favored the SY in the A mixture solution (both SY and MG concentration at 10 mg L−1) and B mixture solution (25 mg L−1 of SY and 10 mg L−1 of MG). Also, in both cases, kinetic data was fairly described by two-step diffusion model. An endothermic and spontaneous nature for the adsorption of the dyes studied were shown from thermodynamic parameters in single and binary component systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号