首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the work a conception of a miniature, orbitron ion vacuum micropump for an integration with vacuum MEMS devices is presented. It is made of silicon and glass using microengineering technology. The main part of the device is a lateral field-emission source of electrons, which has been fabricated on oxidized silicon wafer. Both, cold cathode and anode of the source are made of thin gold layer using only one photolithography process. Fabrication process and the preliminary results of electrical tests of the field-emission electron source are presented. Experimental studies have shown its good emission parameters: a low threshold voltage (over a dozen Volts), a high electron current (from tens to several hundred micro amperes), and field enhancement coefficient from 107 to 108 cm−1. These results are promising and give possibility to fabricate orbitron micropump as an integrated part of vacuum MEMS.  相似文献   

2.
3.
The system with crossed magnetic and electric fields and vacuum arc plasma sources for ion deposition and low-voltage plasma treatment and plasma immersion ion implantation has been investigated. The use of crossed E×B fields provides intense gas ionization and suppresses sheath expansion. Maximum deposition rate of about 1 μm min−1 was obtained on the target surface located under the area where intense ionization of reactive gas occurs (circular area of about 40 mm wide around the target). Without magnetic field the maximum rate of only 0.15 μm min−1 can be achieved. In the crossed E×B fields, high-quality dense TiN coating was obtained. High ion current density to the target surface reaches 500 A m−2, provides effective cleaning of the target surface and heating of the growing film. The ratio of metal plasma current and reactive gas ion current reaches 2.1 and can be easily changed by adjusting the magnetic field strength, without changing the vacuum arc gun current. The uniform film deposition around circumference of the target is provided as a result of ion magnetization in the crossed field zone. The uniform film deposition along the entire target length can be provided by moving magnetic field up and down.  相似文献   

4.
Thin n-type ZnO films doped with different atomic concentrations of aluminium were grown by filtered vacuum arc deposition (FVAD) on glass substrates. The films were deposited using an oxygen working pressure of 2.0 mTorr with an arc current running at two 100 ms pulses s−1. Structural, optical and electrical properties were investigated to understand the effect of Al doping on ZnO films. The best values were found for an ideal aluminium percentage between 4 and 6 at.%.  相似文献   

5.
MgO films were prepared by using pulsed cathodic vacuum arc deposition technique. The substrate bias voltage was in the range of −150 to −750 V. Film structure was investigated by X-ray diffraction (XRD). The annealing effect of thermal spike produced by the impacting of energetic ions was analyzed. The calculated results showed that the lifetime of a thermal spike generated by an energetic ion with the energy of 150 eV was less than one picosecond and it was sufficient to allow Mg2+ or O2- to move one bond length to satisfy the intrinsic stress relief in the affected volume. The MgO(200) lattice spacings of the films deposited at different bias voltages were all larger than the ideal value of 2.1056 Å. As the bias amplitude increased the lattice spacing decreased, which indicated that the compressive stress in the film was partially relieved with increasing impacting ion energy. The stress relief also could be reflected from the film orientation with bias voltage. The biaxial elastic modulus for MgO(100), MgO(110) and MgO(111) planes were calculated and they were M(100) = 199 GPa, M(110) = 335 GPa and M(111) = 340 GPa, respectively. The M values indicated that the preferred orientation will be MgO(200) due to the minimum energy configuration when the lattice strain was large. It was confirmed by the XRD results in our experiments.  相似文献   

6.
W.C. Lang  J.Q. Xiao  J. Gong  R.F. Huang 《Vacuum》2010,84(9):1111-1117
Cathode spot motion and macroparticles (MPs) reduction on related films are the two main issues in the application of the vacuum arc deposition (VAD). In the present work, an axisymmetric magnetic field (AMF) was applied to the cathode surface to investigate the influence of the AMF on the cathode spot motion and the MPs reduction on TiN films. The results show that the AMF affected the cathode spot motion by redistributing the dense plasma connected with the initiation of the new spot. With increasing AMF, there is an increasing tendency for the cathode spot to rotate and drift toward the cathode target edge. Based on the results of FEM simulation and the physical mechanism of the cathode spot discharge, the mechanism of the cathode spot motion in the AMF was discussed. The morphology, detailed size distribution, and roughness of the resultant TiN films were systematically investigated. Fewer and smaller MPs ejection is observed with an increase in the transverse component of AMF. The effect of the AMF on the MPs reduction on TiN films was discussed, and the results were compared with the theoretical predictions.  相似文献   

7.
This study presents a cost‐effective approach for rapid fabricating modeling platforms utilized in fused deposition modeling three‐dimensional printing system. A small‐batch production of modeling platforms about 20 pieces can be obtained economically through silicone rubber mold using vacuum casting without applying the plastic injection molding. The air venting systems is crucial for fabricating modeling platform using vacuum casting. Modeling platforms fabricated can be used for building rapid prototyping model after sandblasting. This study offers industrial value because it has both time‐effectiveness and cost‐effectiveness.  相似文献   

8.
We investigated the effect of the deposition rate of Au source/drain electrodes on the contact resistance of the top-contact organic thin-film transistors (OTFTs). For the formation of source/drain contacts, Au was thermally deposited at the different rates of 0.5, 1.0, 5.0, and 13.0 Å/s. With increasing the Au deposition rate, the contact resistance extracted at the gate voltage of − 30 V could be reduced from 14 × 106 to 2.4 × 106 Ω, resulting in the characteristic improvements of the top-contact OTFT. It is also found that the contact resistance significantly affects the off-state currents of the device having the short channel length of 10 μm. The control of the deposition rate of source/drain electrodes is suggested to optimize the contact properties of the top-contact OTFTs as well as the device performance.  相似文献   

9.
10.
Dual comb-type electrodes were developed as a plasma source in very high frequency (VHF) plasma enhanced chemical vapor deposition system for uniform deposition of silicon films. Two VHF powers introduced to each electrode produced parallel plasma bands, and their positions could be changed by manipulating the phase difference between the supplied VHF waves. Excitation frequency was 80 MHz. The maximum plasma density using this plasma source was 1.5 × 1010/cm3 and the electron temperature was around 2 eV with input power of 2.5 kW, which were measured by double tip Langmuir probe. The uniformity of deposition rate under ± 13% was achieved on 1 m2 area with optimal plasma conditions.  相似文献   

11.
The interelectrode plasma generated at the same conditions (discharge atmosphere, pressure, arc current) in two industrial arc devices was studied by optical emission spectroscopy. The devices were operated with titanium cathodes in vacuum, N2 or a N2/C2H2 mixture. Voltage-current characteristics of the discharges were also investigated. Results of spectral diagnostics indicated on the partial local thermodynamic equilibrium conditions in the sources. From relative emission intensities of the atomic and ionic species, the electron density and the relative concentration of titanium species were evaluated. The coherence of the results derived from the spectroscopic measurements and those obtained earlier by using other techniques was noted.  相似文献   

12.
The construction of a thermocouple vacuum gauge for the range of pressures from 200 to 800 mbar is reported. The gauge differs from similar ones that cover the medium vacuum region. The main difference is that the thermocouple is not fixed to the filament, as usual, but is placed at some distance from the filament.  相似文献   

13.
Performance deterioration with time is one of the most important issues in a vacuum insulation panel (VIP), which is mostly due to the inner gas pressure rise. Outgassing from the interior of core materials is the major gas source when the core material is a polymer. Outgassing characteristics of a polycarbonate as the VIP’s core material are examined theoretically and experimentally. To measure the outgassing rate, specific outgassing tests are carried out using a pressure rise method. Diffusive outgassing mechanism is discussed based on the Fick’s law. As the result, the total amount of dissolved gas and the diffusion coefficients of various gases in the polycarbonate are obtained by using the measured outgassing rate. Temperature dependence of the diffusion coefficient of nitrogen is also examined. It is shown that the outgassing rate of polymer core materials can be significantly reduced to a negligible level by a baking pre-treatment in vacuum and/or by a metal coating on the polymer surface.  相似文献   

14.
ZnSe thin films with different thicknesses are deposited onto glass substrates under a vacuum of 4×10−5 mbar by vacuum evaporation. Rutherford backscattering spectrometry is used to identify the composition of the deposited films. The composition of the deposited films is found to be nearly stoichiometric. The X-ray diffractogram reveals a cubic structure with preferential orientation along the (1 1 1) direction and structural parameters such as crystallite size D, dislocation density δ, strain ε, and lattice parameters are calculated. It is observed that the crystallite size increases from 20.11 to 55.56 nm with increase of film thickness. In the DC conduction studies the conduction mechanism is found to follow an exponential trap distribution with density of states 3.251×1048 J−1 m−3. The dielectric constant is calculated as 8.11 [306 K].  相似文献   

15.
Electroless deposition of Au films on Si(111) substrates from fluorinated-aurate plating solutions has been carried out at varying concentrations, deposition durations as well as bath temperatures, and the resulting films were characterized by X-ray diffraction, optical profilometry, atomic force microscopy and scanning electron microscopy. Depositions carried out with dilute plating solutions (< 0.1 mM) at 28°C for 30 min produce epitaxial films exhibiting a prominent Au(111) peak in the diffraction patterns, while higher concentrations or temperatures, or longer durations yield polycrystalline films. In both epitaxial and polycrystalline growth regimes, the film thickness increases linearly with time, however, in the latter case, at a rate an order of magnitude higher. Interestingly, the surface roughness measured using atomic force microscopy shows a similar trend. On subjecting to annealing at 250°C, the roughness of the film decreases gradually. Addition of poly (vinylpyrrolidone) to the plating solution is shown to produce a X-ray amorphous film with nanoparticulates capped with the polymer as evidenced by the core-level photoelectron spectrum. Nanoindentation using AFM has shown the hardness of the films to be much higher (∼ 2.19 GPa) than the bulk value.  相似文献   

16.
Vacuum arc generated plasma was used to deposit metallic Al, Zn, and Sn coatings on glass substrates. An arc mode with a refractory anode and an expendable cathode (the “hot refractory anode vacuum arc”), overcomes macroparticle (MP) contamination experienced in other arc modes. I = 100–225 A arcs were sustained between a water-cooled coating source cathode and an anode, which was heated by the arc, separated from each other by a 10-mm gap, for times up to 150 s. The distance from the arc axis to the substrate (L) was 80–165 mm. Film thickness was measured with a profilometer. It was found that the deposition rate increased with time to a peak, and then decreased to a steady-state value. The peak occurred earlier when using short anode (9 mm long), e.g., with the Al cathode, L = 110 mm, and I = 200 A, the peak was at t p = 15 s after arc ignition while with the long anode t p = 45 s. t p decreased with I, from 45 s with I = 100 A, to 10 s with I = 225 A with the short anode. The peak is believed to appear due to initial condensation of cathode material (including MPs) on the cold anode, and its subsequent evaporation as the anode heated. In the later HRAVA steady state, a balance between condensation and evaporation on the anode is established. The deposition rate peak was significant with low melting temperature Al and Zn cathodes, which produce many MPs, and negligible with Cu and Ti cathodes.  相似文献   

17.
Objectives: This study employed electrospray deposition (ESD) for simultaneous synthesis and particle engineering of cocrystals.

Significance: Exploring new methods for the efficient production of cocrystals with desired particle properties is an essential demand.

Methods: The possibility of cocrystal formation by ESD was examined for indomethacin-saccharin, indomethacin-nicotinamide, naproxen-nicotinamide, and naproxen-iso-nicotinamide cocrystals. Solutions of the drug and coformer at stoichiometric ratios were sprayed to a high electric field which caused rapid evaporation of the solvent and the formation of fine particles. The phase purity, size, and morphology of products were compared with reference cocrystals. Experiments were performed to evaluate the effects of stoichiometric ratio, concentration and solvent type on the cocrystal formation. Physical stability and dissolution properties of the electrosprayed cocrystals were also compared with reference cocrystals.

Results: ESD was found to be an efficient and rapid method to produce cocrystals for all studied systems other than indomethacin-nicotinamide. Pure cocrystals only formed at a specific drug:coformer ratio. The solvent type has a weak effect on the cocrystal formation and morphology. Electrosprayed cocrystals exhibited nano to micrometer sizes with distinct morphologies with comparable physical stability with reference cocrystals. Nanococrystals of indomethacin-saccharin with a mean size of 219?nm displayed a threefold higher dissolution rate than solvent evaporated cocrystal.

Conclusion: ESD successfully was utilized to produce pure cocrystals of poorly soluble drugs with different morphologies and sizes ranging from nano to micrometer sizes in one step. This study highlighted the usefulness of ESD for simultaneous preparation and particle engineering of pharmaceutical cocrystals.  相似文献   

18.
沉积气压对电弧离子镀制备ZnO薄膜的结构和性能影响   总被引:1,自引:0,他引:1  
采用阴极真空电弧离子镀技术在玻璃衬底上制备出了具有择优取向的透明ZnO薄膜. 利用X射线衍射仪、扫描电子显微镜及紫外-可见吸收光谱仪分别对ZnO薄膜的结构、表面形貌及可见光透过率进行了分析.XRD结果表明,所制备的ZnO薄膜具有六角纤锌矿结构的(002)和(101)两种取向,在沉积气压>1.0Pa时所制备的ZnO薄膜具有(002)择优取向,并且非常稳定.SEM图表明,ZnO晶粒大小较为均匀,晶粒尺寸随着气压升高而变小.在400~1000nm范围内,ZnO薄膜的可见光透过率超过80%,吸收边在370nm附近,所对应的光学带隙约为3.33~3.40eV,并随着沉积气压上升而变大.  相似文献   

19.
P. Osmokrovi?  R. Mari? 《Vacuum》2010,85(2):221-230
This paper investigates, theoretically and experimentally, the applicability of the Space-Time Enlargement Law to vacuum-insulated systems. A discussion on how characteristics of possible vacuum breakdown mechanisms determine the distribution function of the breakdown voltage random variable is presented. By superimposing effects of electrode surface enlargement and inter-electrode gap enlargement, expressions for the mean value and standard deviation of the breakdown voltage random variable are obtained. In the case of time extensions, the assumption of complete independence of consecutive discharge processes is discussed. Experimental testing of the Enlargement Law was performed on Rogowski type two-electrode systems, with different electrode surface areas, inter-electrode gaps and vacuum pressures. Measurements were conducted using industrial ac voltage, dc voltage with 50 V/s rate of rise, standard atmospheric pulse voltage (1,2/50 μs), and commutational pulse voltage (250/2500 μs). The final conclusion, based on the comparison of theoretical considerations and the experimental results, is that the Space-Time Enlargement Law can be applied in the design phase during the development of vacuum devices, with certain limitations, regardless of the type of the applied voltage.  相似文献   

20.
Carbon dioxide was successfully used as carbon source in the synthesis of carbon nanotubes (CNTs) by chemical vapor deposition (CVD) over Fe/CaO catalyst. The product was evaluated using both transmission electron microscopy (TEM) and Raman spectroscopy. Crooked and branching structures of multi-walled carbon nanotubes (MCNTs) with diameters of around 50 nm were observed on the TEM micrographs. Raman spectrum results show that the nanotubes have small defects, which is in agreement with the results of TEM. The influence of reaction variable such as furnace temperature and types of support media was also studied and the reaction mechanism was then discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号