首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 96 毫秒
1.
以卡氏芽孢杆菌(Bacillus cabrialesii)ST-1为研究对象,芽孢数为响应值,采用单因素试验、Plackett-Burman试验、最陡爬坡试验及响应面试验对其发酵培养基进行优化。结果表明,影响卡氏芽孢杆菌ST-1芽孢数的主要因素为蔗糖、麸皮和蛋白胨、磷酸二氢钾,卡氏芽孢杆菌ST-1产芽孢的最适宜培养基配方为:蔗糖13.1 g/L,麸皮+蛋白胨(1∶2)17.0 g/L,磷酸二氢钾2.0 g/L。在此最优条件下,卡氏芽孢杆菌ST-1发酵液中芽孢数达到5.96×109 CFU/mL,是优化前的32.21倍。  相似文献   

2.
响应面法优化枯草芽孢杆菌产胞外多糖培养基   总被引:1,自引:0,他引:1  
从酒药中分离筛选出一株产胞外多糖枯草芽孢杆菌(Bacillussp.)。以胞外多糖的产量为指标,通过响应分析法对细菌胞外多糖产生的发酵培养基进行了初步研究。首先利用单因子实验对培养基中不同成分及添加量进行优化,然后在此基础上利用Box-Behnken中心组合实验设计对影响胞外多糖产量的因素进行优化分析,从而获得最适产胞外多糖的培养基组成。研究结果表明,枯草芽孢杆菌产胞外多糖最佳培养基组成为(g/L):蔗糖25.449、蛋白胨15.229、柠檬酸三钠2.971、牛肉膏3.0、硫酸镁1.0,在此条件下枯草芽孢杆菌胞外多糖的产量为3.554g/L。   相似文献   

3.
响应面法优化芽孢杆菌发酵生产植酸酶   总被引:1,自引:0,他引:1  
对实验室自行分离得到的芽孢杆菌ZJ0702发酵生产植酸酶的条件进行优化,以提高植酸酶的产量。利用2-level Factorial试验筛选出对产酶显著影响的3个因素,通过最陡爬坡试验确定中心点,再采用Central Composite设计对重要因子进行优化。结果发现麸皮、蛋白胨和KH2PO4的添加量是影响植酸酶产量的显著因素,经优化后的培养基组分为3.7%麸皮,2.27%蛋白胨,0.5%硝酸铵0,.008 63%无机磷0,.2%CaCl2,0.05%KCl,0.03%MgSO4,0.003%FeSO4,0.003%MnSO4,0.03%NaCl;培养条件为:34℃,接种量7%,pH7.0,摇瓶装液量75 mL/250 mL,在上述条件下该芽孢杆菌84 h产酶达到最高值13 625.8 U/mL,与优化前菌株产酶活力相比,酶活提高了19.6%。  相似文献   

4.
采用响应面法对芽孢杆菌(Bacillus sp.)CJPE209产角蛋白酶的发酵培养基组分进行优化。在前期单因素优化的基础上利用Plackett-Burman试验设计筛选出影响产酶的2个显著性因素:羽毛粉、蔗糖。在此基础上,采用最陡爬坡试验确定中心复合试验的中心点,然后对其他不显著因素进行最低添加量试验以降低生产成本和简化培养基组分。利用中心复合试验,得到预测最佳培养基组成为羽毛粉5.6 g/L、蔗糖13.6 g/L、尿素5.0 g/L、KH2PO4 0.4 g/L、MgSO4 1.44 g/L、CaCl2 1.1 g/L、NaCl 5.0 g/L,预测角蛋白酶酶活为501.9 U/mL。用预测最佳培养基来进行发酵验证试验,结果实际角蛋白酶酶活为503.5 U/mL,表明模型能较好的预测发酵后酶活。  相似文献   

5.
陈羽  冯镇  张宏伟  韩建春 《食品科技》2011,(6):30-34,39
为了提高芽孢杆菌FC96在液体发酵培养基中的生物量,采用响应面法对其培养基组分进行优化。通过单因素试验确定对芽孢杆菌FC96具有最佳增菌效果的碳源、氮源和无机盐,利用响应面分析法优化培养基组分的最佳配比。试验结果表明,单因素试验确定的最佳碳源、氮源和无机盐分别是葡萄糖、牛肉膏和磷酸二氢钾,响应面法优化芽孢杆菌FC96最佳培养基组成为葡萄糖12.11g/L、牛肉膏23.31g/L和磷酸二氢钾2.33g/L。模型预测的最高活菌数为2.85×109cfu/mL。在未优化培养基中的活菌数为2.32×109cfu/mL。在优化的最佳培养基中,验证试验的最高活菌数为2.97×109cfu/mL,菌数比优化前提高了28%,试验值与预测值的误差为4.21%。  相似文献   

6.
根据响应面法优化培养基配方,向基础培养基中添加廉价碳源和氮源,得到最优配方,即:蛋白胨7.5 g/L,牛肉膏5.0 g/L,葡萄糖(C_6H_(12)O_6·H_2O)15.0 g/L,淀粉8.78 g/L,玉米秸秆水解液0.83 L/L,氯化铵11.12 g/L和豆粕粉11.81 g/L,乙酸钠(CH_3COONa·3H_2O)3.0 g/L,磷酸氢二钾(K_2HPO_4·3H_2O)2.0 g/L,硫酸镁(Mg SO_4·7H_2O)0.58 g/L,硫酸锰(Mn SO_4·H_2O)0.25 g/L。在最优培养基下,可得到凝结芽孢杆菌菌数(21.1±0.27)×10~8CFU/m L,高于基础培养基的14.8±0.31×10~8CFU/m L,增幅达到42.6%;芽孢率51.2%,高于基础培养基的43.2%,增幅达到18.5%。本实验数据为今后凝结芽孢杆菌工业化培养提供了参考依据。  相似文献   

7.
采用响应面法对枯草芽孢杆菌产尿苷发酵培养基进行优化,以期提高尿苷的产量。首先利用PlackettBurman实验设计筛选出影响尿苷产量的3个显著因素:酵母粉,谷氨酸钠,豆粕水解液;在此基础上利用最陡爬坡实验逼近响应值的最佳区域;最后通过中心复合实验和响应面分析确定了影响产苷主要因素的最佳浓度,分别为酵母粉25.6 g/L,谷氨酸钠25.2 g/L,豆粕水解液40.9 m L/L,此时尿苷产量的预测值为13.76 g/L。通过模型的验证实验发现,尿苷的实际产量为13.52 g/L,与模型预测值非常接近,并且比初始培养基提高了164.1%。  相似文献   

8.
对实验室前期分离筛选出的一株对肺炎克雷伯氏菌具有较强抑制效果的海洋芽孢杆菌NO.26的发酵培养基进行优化,并研究其抑菌效果。通过单因素实验,确定了该菌株的最适培养基为甘露醇、酵母浸粉、氯化钠。又通过响应面法,使用Design expert 8.0.6软件进行进一步的优化。实验结果表明,海洋芽孢杆菌NO.26抑制肺炎克雷伯氏菌生长的最佳培养基为:甘露醇11.69 g/L,酵母浸粉3.55 g/L,氯化钠1.25 g/L。经优化后,抑菌圈直径由初始的12.85 mm达到17.89 mm。该优化结果对进一步研究其抑菌活性及代谢产物奠定了基础。  相似文献   

9.
为提高枯草芽孢杆菌FHYB201030的表面活性素生产能力,本文以枯草芽孢杆菌FHYB201030为试验菌株,CPC-BTB(氯化十六烷基吡啶-溴百里酚蓝)值为考核指标,利用单因素实验、Plackett-Burman试验、最陡爬坡试验和响应面试验进行优化,筛选出产表面活性素的最优发酵条件。Plackett-Burman试验筛选出对表面活性素产量影响显著的因素为温度、乳糖、谷氨酸(Glu),采用最陡爬坡设计和Box-Behnken中心组合设计三因素三水平试验,计算得到表面活性素产量最高的培养基成分为乳糖25 g/L、酪蛋白10 g/L、牛肉膏3 g/L、蛋白胨10 g/L、NaCl 5 g/L、Mn2+ 0.5 mmol/L、Glu 2.5 g/L;最佳培养条件为温度40 ℃、转速200 r/min、装液量30%(体积比)。在上述发酵条件下,枯草芽孢杆菌FHYB201030表面活性素的产量为0.48 mg/mL,较优化前的0.35 mg/mL提高34.56%。研究结果为提高表面活性素生产水平奠定良好的基础。  相似文献   

10.
首先通过单因素实验分析了不同碳源、氮源、金属盐、磷源对解淀粉芽孢杆菌产凝乳酶的影响,然后在此基础上采用Box-Behnken设计对葡萄糖、酵母粉和CaCO3三因素的最优组合进行了定量研究,建立并分析了各因素与凝乳酶活力关系的数学模型。结果表明,解淀粉芽孢杆菌产凝乳酶的最佳工艺条件:马铃薯浸粉0.5%,葡萄糖1.13%,酵母浸粉1.76%,CaCO3为0.32%(均为质量分数),在此最佳培养基条件下,凝乳酶活力可达436.8 SU/mL,与理论预测值438.4 SU/mL基本一致,优化后解淀粉芽孢杆菌产凝乳酶的活力比基础培养基提高了5.21倍。  相似文献   

11.
在单因素实验基础上,选取碱添加量、碱处理时间、碱处理温度为自变量,感官评分、复水比、可溶性蛋白损失量为响应值,采用Box-Behnken中心组合设计优化得到干鱿鱼复水的最佳工艺条件为:碱添加量0.33%、碱处理时间8 h、碱处理温度25℃。在此条件下,复水鱿鱼感官评分83.41、复水比2.96、可溶性蛋白损失量9.835 mg/g,与理论感官评分82.10、复水比2.89、可溶性蛋白损失量10.094 mg/g相比,其相对误差分别约为1.57%、2.36%、2.63%。说明通过响应面优化得出的回归方程具有一定的实践指导意义。   相似文献   

12.
在玉米秸秆腐殖质土壤中筛选分离得到一株巨大芽孢杆菌(Bacillus megaterium)Y103,采用单因素试验、响应面法优化巨大芽孢杆菌Y103产普鲁兰酶的培养条件。结果表明,最佳培养基配方为糯米淀粉8.5 g/L,酵母膏13.3 g/L,蛋白胨 26.7 g/L,KH2PO4 0.5 g/L,MgSO4·7H2O 0.1 g/L,MnSO4·7H2O 0.05 g/L,NaCl 2.0 g/L。最佳发酵条件为初始pH8.8,发酵温度21 ℃,发酵时间55 h。在最优条件下,普鲁兰酶酶活力为(0.77±0.03) U/mL,是优化前的3.21倍。该酶的最适作用温度为50 ℃,最适pH为8.0,其水解普鲁兰糖的产物中有大量麦芽三糖和麦芽六糖,表明其为一种新颖的II型普鲁兰酶,在洗涤剂、高麦芽糖浆和麦芽六糖的生产中有着潜在的巨大利用价值。  相似文献   

13.
《食品工业科技》2013,(02):259-261
为了优化藜芦胺的提取工艺,采用响应面法优化提取时间、提取温度和料液比,分析并建立数学模型。结果表明,提取时间、提取温度、料液比对藜芦胺的提取量均有极显著影响(p<0.01);并确定最佳提取工艺参数为时间2h,提取温度75.0℃,料液比1∶9(g/mL)。在此优化条件下,20.0g干燥藜芦根提取得到藜芦胺的量为98.23mg,与模型预测值得比较误差为2.66%。与模型预测值吻合,说明所建立的模型符合实际操作。   相似文献   

14.
郫县豆瓣中所用蚕豆是产自四川省和云南省的优质干蚕豆,经筛选、浸泡、接种、制曲等一系列加工后形成成曲蚕豆瓣子。采用酶联免疫吸附法(ELISA),根据Box-Behnken Design软件的设计原理,检测成曲蚕豆瓣子中黄曲霉毒素B1。探讨了甲醇浓度、料液比、超声波提取时间等因素对样品中黄曲霉毒素提取的影响,以确定检测生产过程中样品黄曲霉毒素含量的最优方案。以黄曲霉毒素含量为响应值,利用响应面分析法对提取参数进行优化。结果表明:甲醇浓度39.66%,超声波提取时间27.70min,超声波提取功率88.97%是检测成曲蚕豆瓣子中黄曲霉毒素含量的最优条件,以该优化条件检测成曲蚕豆豆瓣子中黄曲霉毒素其值达到最大,为1.47μg/kg。  相似文献   

15.
为提高一株分离自浓香型白酒糟培的菌株甲基营养型芽孢杆菌(Bacillus methylotrophicus) J2B-74发酵产细菌素能力,以金黄色葡萄球菌为指示菌,以抑菌圈直径为考察指标,在单因素试验的基础上采用响应面法优化发酵工艺。结果表明:最优发酵条件为发酵起始pH 6.0、发酵时间33.5 h、发酵温度36.5 ℃,接种量1%,吐温-80添加量5‰。在此条件下平均抑菌圈直径为14.07 mm,较优化前提高了32.36%。最优发酵条件下获得的实验结果与模型预测值吻合,说明所建立的模型是切实可行的。  相似文献   

16.
响应面法优化壳聚糖酶发酵培养基   总被引:2,自引:0,他引:2  
张朝正  李意  赵华 《中国酿造》2022,41(1):197-203
为了提高壳聚糖酶的产量,在单因素的试验基础上,采用响应面法优化诱变后菌株的发酵培养基。利用Plackett-Burman试验设计分析发酵培养基中的7个组分,确定了其中的3个显著因素为酵母浸粉、葡萄糖和MgSO4·7H2O,应用最陡爬坡试验确定了这3个因素的合理范围,再通过Box-Behnken响应面试验优化培养基组分。结果表明,最佳发酵培养基为:酵母浸粉16.9 g/L,葡萄糖10.3 g/L,NaCl 5 g/L,K2HPO4 1.4 g/L,KH2PO4 0.6 g/L,MgSO4·7H2O 1.2 g/L和吐温-80 1.2 g/L。在此优化条件下,壳聚糖酶酶活力达到10.57 U/mL,比优化前提高了11.77%。  相似文献   

17.
响应面法优化普鲁兰多糖发酵培养基   总被引:1,自引:0,他引:1  
采用响应面分析法对出芽短梗霉生产普鲁兰多糖的发酵培养基进行优化。采用Plackett-Burman实验筛选出影响普鲁兰多糖产量的主要因素为蔗糖、NaCl和FeSO4,利用最陡爬坡路径逼近响应区域,应用Box-Behnken设计和响应面分析优化得到最佳发酵培养基,发酵单位较优化前提高了30.1%。  相似文献   

18.
Response surface methodology was applied to determine the optimum conditions for the Maillard reaction so that high levels of antioxidative and antimutagenic substances could be produced from defatted soybean and corn starch hydrolysates. The optimum reaction conditions predicted to produce the greatest levels of active antioxidative and antimutagenic melanoidins were 155.0 °C for 6.3 h at a pH of 12.1 and 155.5–160.4 °C for 4.60–9.70 h at pH 10.4–12.5 respectively. The range of optimum reaction conditions to maximize melanoidin production were 148–170 °C for 3.0–7.5 h at pH values between 10.2 and 13.5. These predicted values for optimum reaction conditions were in good agreement with experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号