首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Optical Materials》2005,27(3):419-423
Nanocrystalline ZnS films have been prepared by sulfidation of the reactive magnetron sputtered ZnO films. The structure, composition and optical properties of the sulfurized ZnO films as a function of the sulfidation temperature (TS) have been systematically studied. It is found that at TS  400 °C ZnO is completely converted to ZnS with the hexagonal structure. The ZnS films have a strongly (0 0 2) preferred orientation and an optical transparency of about 80% in the visible region. In addition, at TS < 444.6 °C (boiling point of sulfur), some residual sulfur decomposed from H2S gas can adhere to the sulfurized film surface while at TS = 580 °C a S/Zn ratio much higher than the ideal stoichiometric proportion of ZnS is obtained for the ZnS films. ZnS films with a minimum XRD FWHM value of 0.165° and a good S/Zn ratio of 0.99 are obtained at a temperature of 500 °C indicating the ZnS films to be suitable for use in the thin film solar cells.  相似文献   

2.
Rengang Zhang  Baoyi Wang 《Vacuum》2008,82(11):1208-1211
Nanocrystalline ZnS thin films are prepared on glass and quartz substrates by sulfurizing ZnO thin films in the H2S-containing mixture at 500 °C. These films are investigated by X-ray diffraction, scanning electron morphology, optical transmittance and photoluminescence spectra. The results show that the ZnS thin films have the hexagonal structure with a c-axis preferred orientation. Also, these nanostructure ZnS thin films with the grain size of ∼50 nm along the c-axis, exhibit the optical transparency as high as ∼80% in the visible region. It is found that sulfur replacement of oxygen sites in crystal lattices and recrystallization can take place during sulfidation, resulting in an evident increase of the grain size for the sulfurized films. Under the optimum sulfidation time of 2 h, the resultant ZnS thin films have a high crystallinity, low defect concentration and good optical properties with the band gap of 3.66 eV.  相似文献   

3.
Thermochromic VO2 thin films presenting a phase change at Tc = 68 °C and having variable thickness were deposited on silicon substrates (Si-001) by radio-frequency sputtering. These thin films were obtained from optimized reduction of low cost V2O5 targets. Depending on deposition conditions, a non-thermochromic metastable VO2 phase might also be obtained. The thermochromic thin films were characterized by X-ray diffraction, atomic force microscopy, ellipsometry techniques, Fourier transform infrared spectrometry and optical emissivity analyses. In the wavelength range 0.3 to 25 μm, the optical transmittance of the thermochromic films exhibited a large variation between 25 and 100 °C due to the phase transition at Tc: the contrast in transmittance (difference between the transmittance values to 25 °C and 100 °C) first increased with film thickness, then reached a maximum value. A model taking into account the optical properties of both types of VO2 film fully justified such a maximum value. The n and k optical indexes were calculated from transmittance and reflectance spectra. A significant contrast in emissivity due to the phase transition was also observed between 25 and 100 °C.  相似文献   

4.
Fabrication of ZnS thin films having similar stoichiometry at different substrate temperatures (TS) e.g. 200 °C, 300 °C and 400 °C by means of RF magnetron sputtering method is presented. The films grown at TS of 200 °C are in cubic zinc-blende phase and textured along (111) plane. The films deposited at TS of 300 °C and 400 °C are in hexagonal wurtzite phase. The surface roughness and grain size of the films increase with increasing TS. The ultra-violet and visible absorption studies show that the bandgap of films can be tailored by varying TS, taking advantage of the structural transformation.  相似文献   

5.
Epitaxial tin oxide (SnO2) thin films have been prepared on MgO (100) substrates at 500-600 °C by metalorganic chemical vapor deposition method. Structural and optical properties of the films have been investigated in detail. The obtained films were pure SnO2 with the tetragonal rutile structure. An in-plane orientation relationship of SnO2 (110) [010]//MgO (200) [110] between the film and substrate was determined. Two variant structure of SnO2 were analyzed. The structure of the film deposited at 600 °C was investigated by high-resolution transmission electron microscopy, and an epitaxial structure was observed. The absolute average transmittance of the SnO2 film at 600 °C in the visible range exceeded 90%. The optical band gap of the film was about 3.93 eV.  相似文献   

6.
Stacked precursors of Cu, Sn, and Zn were fabricated on glass/Mo substrates by electron beam evaporation. Six kinds of precursors with different stacking sequences were prepared by sequential evaporation of Cu, Sn, and Zn with substrate heating. The precursors were sulfurized at temperatures of 560 °C for 2 h in an atmosphere of N2 + sulfur vapor to fabricate Cu2ZnSnS4 (CZTS) thin films for solar cells. The sulfurized films exhibited X-ray diffraction peaks attributable to CZTS. Solar cells using CZTS thin films prepared from six kinds of precursors were fabricated. As a result, the solar cell using a CZTS thin film produced by sulfurization of the Mo/Zn/Cu/Sn precursor exhibited an open-circuit voltage of 478 mV, a short-circuit current of 9.78 mA/cm2, a fill factor of 0.38, and a conversion efficiency of 1.79%.  相似文献   

7.
Fabrications of ZnS nanocrystalline thin films at different substrate temperatures (TS) of 200, 300 and 400 °C by means of pulsed laser deposition are presented. Thin film deposited at TS of 200 °C is in cubic zinc-blende (ZB) structure while those deposited at TS of 300 and 400 °C are in hexagonal wurtzite (W) phase. The grain size, surface roughness and bandgap of the films increases with increasing TS. The zinc vacancies and interstitials in the films increases while sulfur vacancies decreases with increasing TS. The variation of zinc and sulfur vacancies in ZnS films with TS is responsible for structural phase transition from ZB to W which causes the change in energy bandgap.  相似文献   

8.
Antimony doped tin oxide SnO2: Sb thin films have been fabricated by atmospheric pressure chemical vapour deposition at substrate temperature varying between 350 °C and 420 °C in a horizontal reactor, from a mixture of hydrated SnCl2, SbCl3 and O2 gas. The films were grown on glass substrates and onto polished and porous n-type silicon. Doped films fabricated with various Sb (Sb/Sn %) contents ranging from undoped 0% to 4% were characterised employing different optical characterisation techniques, like X-ray diffraction, transmittance and reflectance in the wavelength range of 300 to 2500 nm and ellipsometry. The films exhibit the usual cassiterite diffraction pattern with high crystalline structure. Examination of the surface by scanning electron microscopy (SEM) showed that the films are textured made up of many pyramidal crystallites with nanofaceted surfaces, indicating highly stabilised material. The presence of inverted pyramids indicates that the crystallites grown by coalescence. The surface morphology was found to be independent on the kind of the substrate. From X-Ray spectra and SEM observations we get the texture the lattice constant and the grain size. The optical results provide information on film thickness, optical parameters and transmittance upon antimony concentration. The microstructure of the films, the grain growth topics (nucleation, coalescence…) depend strongly on deposition conditions and doping concentration. The observed variations of both the resistivity ρ and transmittance T are correlated to antimony atoms concentration which induced variation in the microstructure and in the size of SnO2 nanograins (typically 20-40 nm). In this work, we have determined the feasibility of incorporating the correct amount of Sb atoms in tin oxide film by means of resistivity and transmission. SEM observations showed that the substrate do not affect the morphology.  相似文献   

9.
A transparent vanadium oxide film has been one of the most studied electrochromic (EC) and Thermochromic (TC) materials. Vanadium oxide films were deposited at different substrate temperatures up to 400 °C and different ratios of the oxygen partial pressure (PO2). SEM, AFM and X-ray diffraction's results show detail structure data of the films. IR mode assignments of the films measured by IR reflection-absorbance in NGIA (near grazing incidence angle) are given. It is found that the film has V2O5 and VO2 combined structures. The films exhibit clear changes in transmittance when the environment temperature (Te) is varied, especially in the 3600-4000 cm− 1 range. Applying a Te that is higher than a critical temperature (Tc) to the samples, the as-RT (room temperature) deposited film with 9% PO2 has a transmittance variation of 30%, but the films that were deposited on a heated substrate of 400 °C have little variation. There is tendency of bigger variation in transmittance for the sample deposited at a larger PO2, when it is applied by 200 °C Te.  相似文献   

10.
Natively textured surface aluminum doped zinc oxide (ZnO:Al) thin films were directly deposited via pulsed direct current (DC) reactive magnetron sputtering on glass substrates. During the reactive sputtering process, the oxygen gas flow rate was varied from 8.5 sccm to 11.0 sccm. The influences of oxygen flow rate on the structural, electrical and optical properties of naturally textured ZnO:Al TCO thin films with milky surface were investigated in detail. Gradual oxygen growth (GOG) technique was developed in the reactive sputtering process for textured ZnO:Al thin films. The light-scattering ability and optical transmittance of the natively textured ZnO:Al TCO thin films can be improved through gradual oxygen growth method while maintaining a low sheet resistance. Typical natively textured ZnO:Al TCO thin film with crater-like surface exhibits low sheet resistance (Rs  4 Ω), high transmittance (Ta > 85%) in visible optical region and high haze value (12.1%).  相似文献   

11.
In an effort to prepare thin films of novel semiconductor materials that contain only cost effective, abundant, and relatively less-toxic materials, lead antimony sulfides films have been prepared. Herein, we report the thin film preparation of semseyite (Pb9Sb8S21) via annealing of precursor films under sulfur vapor. Pb/Sb alloy precursor films suffered substantial changes in stoichiometry and produced rough films, whereas precursor films composed of multilayers of PbS and amorphous (Sb,S) produced smooth and compact phase-pure films composed of fine grains. Optical measurements indicated a direct band gap of 1.93 eV and a strong absorption coefficient of 1.0 × 105 cm 1.  相似文献   

12.
Aluminium oxide being environmentally stable and having high transmittance is an interesting material for optoelectronics devices. Aluminium oxide thin films have been successfully deposited by hot water oxidation of vacuum evaporated aluminium thin films. The surface morphology, surface roughness, optical transmission, band gap, refractive index and intrinsic stress of Al2O3 thin films were studied. The cost effective vapor chopping technique was used. It was observed that, optical transmittance of vapor chopped Al2O3 thin film showed higher transmittance than the nonchopped film. The optical band gap of vapor chopped thin film was higher than the nonchopped Al2O3, whereas surface roughness and refractive index were lower due to vapor chopping.  相似文献   

13.
Multi-stage evaporation is a well-established method for the controlled growth of chalcopyrite thin films. To apply this technique to the deposition of Cu2ZnSnS4 thin films we investigated two different stage sequences: (A) using Cu2SnS3 as precursor to react with Zn-S and (B) using ZnS as precursor to react with Cu-Sn-S. Both Cu2SnS3 and ZnS are structurally related to Cu2ZnSnS4. In case (A) the formation of copper tin sulphide in the first stage was realized by depositing Mo/SnSx/CuS (1 < x < 2) and subsequent annealing. In the second stage ZnS was evaporated in excess at different substrate temperatures. We assign a significant drop of ZnS incorporation at elevated temperatures to a decrease of ZnS surface adhesion, which indicates a self-limited process with solely reactive adsorption of ZnS at high temperatures. In case (B) firstly ZnS was deposited at a substrate temperature of 150 °C. In the second stage Cu, Sn and S were evaporated simultaneously at varying substrate temperatures. At temperatures above 400 °C we find a strong decrease of Sn-incorporation and also a Zn-loss in the layers. The re-evaporation of elemental Zn has to be assumed. XRD measurements after KCN-etch on the layers prepared at 380 °C show for both sample types clearly kesterite, though an additional share of ZnS and Cu2SnS3 can not be excluded. SEM micrographs reveal that films of sample type B are denser and have larger crystallites than for sample type A, where the porous morphology of the tin sulphide precursor is still observable. Solar cells of these absorbers reached conversion efficiencies of 1.1% and open circuit voltages of up to 500 mV.  相似文献   

14.
M. Zribi  B. Rezig 《Thin solid films》2008,516(7):1476-1479
Structural, morphological and optical properties of TiO thin films grown by single source thermal evaporation method were studied. The films were annealed from 300 to 520 °C in air after evaporation. Qualitative film analysis was performed with X-ray diffraction, atomic force microscopy and optical transmittance and reflectance spectra. A correlation was established between the optical properties, surface roughness and growth morphology of the evaporated TiO thin films. The X-ray diffraction spectra indicated the presence of the TiO2 phase for the annealing temperature above 400 °C.  相似文献   

15.
Microstructure-Property relationships in thin film ITO   总被引:1,自引:0,他引:1  
Polycrystalline tin-doped indium oxide (ITO) thin films were prepared by pulsed laser deposition (PLD) with an ITO (In2O3-10 wt.% SnO2) target and deposited on borosilicate glass substrates. By changing independently the deposition temperature and the oxygen pressure, a variety of microstructures were deposited. These different microstructures were mainly investigated not only by transmission electron microscopy (TEM) with cross-section and plan-view electron micrographs, but also by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction. Composition changes in ITO thin films grown under different deposition conditions were characterized by energy dispersive X-ray spectroscopy (EDX). The optical and electrical properties were studied respectively by UV-visible spectrophotometry and a four-point probe. The best compromise in terms of high transmittance (T) in the visible range and low resistivity (ρ) was obtained for films deposited between 0.66 and 2 Pa oxygen pressure (PO2) at 200 °C substrate temperature (Ts). The influence of PO2 and Ts on the microstructure and ITO film properties is discussed.  相似文献   

16.
A series of polycrystalline aluminum-doped zinc oxide (AZO) films were deposited on glass substrates by direct current pulse reactive magnetron sputtering at substrate temperatures (Ts) ranging from 210 °C to 290 °C. The effect of Ts on the crystalline structure, electrical, and optical properties of the as-deposited AZO films was systematically investigated by X-ray diffractometry, four-point probe measurements, and spectrophotometry. After 3 h growth, the as-deposited AZO films had no obvious (002) c-axis preferential orientation resulting from the transition of growth mode from (002) vertical growth to (103) lateral growth. The film resistivity drastically decreased when Ts was varied from 210 °C to 270 °C indicating that strong (002) preferential orientation did not ensure low resistivity. The film resistivity was, to some extent, related to the free carrier concentration and surface morphology of the film, rather than by the full width at half maximum or the integrated intensity ratio of the AZO-(002) and (103) diffraction peaks. The blue and red shifts of the Ts-related film optical absorption edge can be explained by the Burstein-Moss effect. However, the average film optical transmissivity that was independent of Ts was over 85% in the visible light region.  相似文献   

17.
Bi2S3 thin films were grown by successive ionic layer adsorption and reaction method (SILAR) onto the glass substrates at room temperature. The as prepared thin film were annealed at 250 °C in air for 30 min. These films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrical measurement systems. The X-ray diffraction patterns reveal that Bi2S3 thin film have orthorhombic crystal structure. SEM images showed uniform deposition of the material over the entire glass substrate. The optical energy band gap observed to be decreased from 1.69 to 1.62 eV for as deposited and annealed films respectively. The IV measurement under dark and illumination condition (100 W) show annealed Bi2S3 thin film gives good photoresponse as compared to as deposited thin film and Bi2S3 thin film exhibits photoconductivity phenomena suggesting its useful in sensors device. The thermo-emf measurements of Bi2S3 thin films revealed n-type electrical conductivity.  相似文献   

18.
SmS optical thin films were deposited on the surface of ITO glass with an electrodeposition method using aqueous solution containing SmCl3·6H2O and Na2S2O3·5H2O. The phase composition was analyzed by X-ray diffraction (XRD) and microstructure of the film was characterized by atomic force microscope (AFM). It is showed that SmS thin film could be obtained in the solution with n(Sm)/n(S) = 1:4, pH = 4.0 and annealing in Ar atmosphere at 200 °C for 0.5 h. The as-prepared thin films on the ITO glass exhibit a dense microstructure. The band gap of the thin film has been found to be 3.6 eV.  相似文献   

19.
CdS/Sb2S3/PbS structures were prepared by sequential chemical deposition of CdS, Sb2S3 and PbS thin films on TEC-8 (Pilkington) transparent electrically conductive SnO2 (TCO) coatings. CdS thin films (100 nm) were deposited with hexagonal structure from Cd-citrate bath and of cubic structure from Cd-ammine/triethanolamine bath. Sb2S3 thin films were deposited at 40 °C from a solution mixture of potassium antimony tartrate, triethanolamine, ammonia and thioacetamide(TA) or at 1 to 10 °C from a mixture of antimony trichloride and thiosulfate (TS). These films were made photoconductive by heating at temperatures 250 to 300 °C. When heated in the presence of a chemically deposited Se thin film of 300 nm, a solid solution Sb2S1.8Se1.2 resulted. PbS thin films of 100-200 nm thickness were deposited on the TCO/CdS/Sb2S3 or TCO/CdS/Sb2S1.8Se1.2 structure. Graphite paint was applied on the PbS film prior to applying a silver epoxy paint. The cell structures were of area 0.4 cm2. The best results reported here is for a cell: TCO/CdS(hex-100 nm)/Sb2S3(TS-100 nm)/PbS(200 nm) with open circuit voltage (Voc) 640 mV, short circuit current density 3.73 mA/cm2, fill factor 0.29, and conversion efficiency 0.7% under 1000 Wm− 2 sunlight. Four series-connected cells of area 1 cm2 each gave Voc of 2 V and short circuit current of 1.15 mA.  相似文献   

20.
In this study, we manufactured Mg-Zn-F targets using magnesium fluoride (MgF2) and zinc (Zn). The passivation films were deposited on a poly-ethylenenaphthalate (PEN) substrate using a radio-frequency magnetron sputter. The thickness of the manufactured passivation film was 120 nm. Among the three targets tested, the 4:6 weight target of MgF2 to Zn resulted in films with the highest Zn content that would increase the packing density of the thin film. The water vapor transmission rate of a 120 nm Mg-Zn-F film prepared from this target and inserted between two 40 nm MgF2 interlayers on PEN was 2.9 × 10− 2 g/(m2 day) at a relative humidity of 90% and a temperature 38 °C. Its optical transmittance was approximately 80%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号