首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Layered LiAl1/3−xCoxNi1/3Mn1/3O2 (0  x  1/3) compounds were studied via the combination of computational and experimental approach. The calculated voltage curve of LiNi1/3Al1/3Mn1/3O2 compound is presented, indicating it is of great potential for a cathode material of lithium-ion batteries. Unfortunately, it was found that the LiNi1/3Al1/3Mn1/3O2 compound without impurity phase could not be synthesized via a sol–gel process. To obtain a layered compound without impurity phase, partial of Al is replaced by Co in LiNi1/3Al1/3Mn1/3O2 compound in this study. Layered LiAl1/3−xCoxNi1/3Mn1/3O2 (0  x  1/3) compounds were synthesized via sol–gel reaction at 900 °C under a oxygen stream. Single phase of the LiAl1/3−xCoxNi1/3Mn1/3O2 in 1/6  x  1/3 region could be prepared successfully. The discharge capacity and conductivity increased with an increase in the Co-substitution content. The enhancement of the conductivity and phase purity by the introduction of Co content shows profound influence on the performance of the LiAl1/3−xCoxNi1/3Mn1/3O2 compounds.  相似文献   

2.
Growth of CuGaxIn1−xSe2 single crystals by THM (traveling heater method) has been investigated. On the basis of the relation between the composition x of grown crystal CuGaxIn1−xSe2 and y of CuGayIn1−ySe2 solute in 60 mol% In solution, THM growth of CuGaxIn1−xSe2 (x = 0, 0.2, 0.4, 0.7, 1) was performed using a zone ingot which was prepared in advance. Bulk single crystals with 10 mm in diameter and 20–30 mm in length have been obtained by the THM growth, and their electrical and optical properties have been studied.  相似文献   

3.
The preparation of LiCoyMnxNi1−xyO2 from LiOH·H2O, Ni(OH)2 and γ-MnOOH in air was studied in detail. Single-phase LiCoyMnxNi1−xyO2 (0y0.3 and x=0.2) is obtained by heating at 830–900°C. The optimum heating temperatures are 850°C for y=0–0.1 and 900°C for y=0.2–0.3. Excess lithium (1z1.11 for y=0.2) and the Co doping level (0.05y0.2) do not significantly affect the discharge capacity of LizCoyMn0.2Ni0.8−yO2. The doping of Co into LiMn0.2Ni0.8O2 accelerates the oxidation of the transition metal ion, and suppresses partial cation mixing. Since the valence of the manganese ion in LiMn0.2Ni0.8O2 is determined to be 4, the formation of a solid solution between LiCoyNi1−yO2 and Li2MnO3 is confirmed.  相似文献   

4.
High-temperature X-ray diffraction has been used to investigate the phase stability of lanthanum strontium cobalt oxide (LSC) for a range of materials with the formula La1−xSrxCoO3−δ (x = 0.7, 0.4, and 0.2). The stability of LSC increases with La content in low oxygen partial pressures at high temperature. Oxygen vacancy ordering has been observed for all three compositions in either low oxygen pressure or under reducing gas, as evidenced by the formation of the brownmillerite phase. The crystal structure of the vacancy-ordered phase was determined using Rietveld analysis of synchrotron X-ray diffraction data. The decomposition products under low oxygen pressure and in reducing conditions have been identified and characterized, including the phase transition and thermal expansion of the primary decomposition products, LaSrCoO4 and LaSrCoO3.5.  相似文献   

5.
A comparative analysis of the properties of LiNi0.5Mn0.5O2 and Li1+xNi0.5Mn0.5O2 (0.2 ≤ x ≤ 0.7) powders, obtained by the freeze drying method, was performed. Lattice parameters of Li1+xNi0.5Mn0.5O2 decreased considerably with growing amounts of Li until x = 0.3; at x > 0.5 trace amounts of Li2MnO3 are observed by X-ray diffraction (XRD) patterns. X-ray photoelectron spectroscopy (XPS) analysis displayed an increase of Ni3+/Ni2+ ratio at 0.3 < x < 0.5, while Mn 2p spectra were almost identical in all samples. Rechargeable capacity values (V = 2.5–4.6 V) increased systematically with x reaching its maximum (185–190 mAh g−1) at x = 0.5. Samples with superstoichiometric lithium content also demonstrated good C rate characteristics.  相似文献   

6.
Rutile-type Ru1−xVxO2 nanoparticles possessing high surface area were prepared by a polymerizable-complex method and its electrochemical supercapacitor behavior was studied. X-ray diffractometry, energy-dispersive X-ray analysis, and N2 adsorption/desorption measurements were used to characterize the structure of the products. The electrochemical supercapacitor behavior of thick and thin films was studied by cyclic voltammetry in various acidic, neutral, and alkaline electrolytes. Ru1−xVxO2 exhibited extremely enhanced supercapacitive properties compared to pure RuO2. The highest surface redox activity was achieved with an acidic electrolyte. Ru1−xVxO2 showed negligible surface redox activity in neutral electrolytes.  相似文献   

7.
Novel methanol-tolerant catalysts for oxygen reduction reaction (ORR), IrxCo1−x/C (x = 0.3–1.0), were synthesized by a conventional impregnation method. These carbon-supported catalysts showed particle sizes of 2.7–5.0 nm. The catalyst activity and the catalyzed ORR kinetics were characterized by cyclic voltammetry and rotating disk electrode methods. Among these IrxCo1−x/C catalysts, the alloy with a formula of IrxCo1−x/C with x value in the range of 0.7–0.8 exhibited the highest mass and specific activities. Compared to a Pt/C catalyst, these alloy catalysts have much stronger methanol tolerance in terms of ORR onset potential (or open-circuit potential). Based on the rotating disk electrode measurements, it was confirmed that these IrxCo1−x/C alloy catalysts could catalyze a complete four-electron transfer reaction of oxygen to water. These results strongly suggest that the novel Ir–Co metal alloy catalysts synthesized in this work could be promising for DMFC cathodes.  相似文献   

8.
LiMxMn2−xO4 (M=Co, Ni) materials have been synthesized by a melt-impregnation method using γ-MnOOH as the manganese source. Highly crystallized LiMxMn2−xO4 compounds were synthesized at a calcination temperature of 800°C for 24 h in air. All compounds show a single phase except for LiNi0.5Mn1.5O4 based on the X-ray diffraction (XRD) diagram. With the increase of the doping content from 0.1 to 0.5, the capacity of doping materials decreases mainly in the 4 V region.

Although LiM0.5Mn1.5O4 (M=Co, Ni) compound shows a small capacity in the (3+4) V region compared with parent LiMn2O4, it is a very effective material in reducing capacity loss in the 3 V region that is caused by the Jahn–Teller distortion. The doping of Co and Ni ions in the LiMn2O4 cathode material promotes the stability of this structure and provides an excellent cyclability.  相似文献   


9.
A CuIn(SxSe1−x)2 alloy thin-film was prepared by selenization of CuInS2: its composition ratio x can be controlled by the number of selenization cycles implemented. Crystallinity of the films was improved by annealing in vacuum. The resistivity of the film was about 1 Ω cm and increased by one to two orders of magnitude after KCN treatment. An 8.1 % efficiency solar cell was obtained by using this annealed alloy thin-film.  相似文献   

10.
This paper deals with computer simulation of the PC isotherms of some ZrFe2 type (Zr(Fe1−xCrx)2, Zr1−xTixFe1.4Cr0.6, Zr1−2xMmxTixFe1.4Cr0.6 : x00.4) of hydrogen storage materials. A feasible mathematical model has been developed to simulate the PC isotherms. The randomized variables in the model applied for simulating the PC isotherms of the above-mentioned ZrFe2 type hydrogen storage materials correspond to change in enthalpy (ΔH) and entropy (ΔS) of hydride formation. Several ZrFe2 type materials as in above have been synthesized and their PC isotherms, enthalpy and entropy change has been evaluated experimentally in order to have input data for simulation. A special software was developed to simulate the PC isotherms using the said model. A close match between the experimentally observed and simulated PC isotherms for the above said ZrFe2 type alloys has been obtained.  相似文献   

11.
Cu(InxGa1−x)2Se3.5 thin films were fabricated by rf sputtering from CuInxGa1−xSe2 and Na mixture target by controlling the mixture ratio. X-ray diffraction analyses show that the structure of Cu(InxGa1−x)2Se3.5, thin films is different from chalcopyrite structure: especially, CuIn2Se3.5 thin films have a defect chalcopyrite structure. The lattice parameters for Cu(InxGa1−x)2Se3.5 thin film are slightly smaller than those for CuInxGa1−xSe2 thin film and linearly decreased with increasing Ga content. The optical absorption coefficients for Cu(InxGa1−x)2Se3.5, thin films exceed 2 × 104 cm−1 in energy region above the fundamental band edge. The band gap for Cu(InxGa1−x)2Se3.5 thin films is larger than that for CuIn.Ga1−x2Se2 with the same Ga content and increased with increasing Ga content.  相似文献   

12.
In order to enhance the electrochemical capacity of the Co-free AB5-type electrode alloy, Mm in the alloys was substituted with La and Co-free LaxMm1−x(NiMnSiAlFe)4.9 (x = 0, 0.45, 0.75, 1.0) hydrogen storage alloys were prepared by casting and rapid quenching. The effects of the substituting Mm with La on the electrochemical performances of the as-cast and quenched alloys were investigated in detail. The obtained results show that substituting Mm with La can enhance markedly the capacities of the as-cast and quenched alloys. When the amount of substituting Mm with La, x increased from 0 to 1.0, the maximum capacity of the as-cast alloys at 0.2C rate increased from 273.45 to 304.47 mAh g−1, and the capacity retaining rate (Rh) increased from 59.16 to 59.86%. The capacity of the as-quenched alloys with a quenching rate of 10 m s−1 increased from 236.83 to 300.31 mAh g−1, and the capacity retaining rate (Rh) decreased from 78.69 to 62.29%. The substituting Mm with La had an insignificant effect on the activation capabilities of the as-cast and quenched alloys.  相似文献   

13.
The Ce1−xRxNi2.5Cu2.5 (R = La,Pr; 0.8 x 0.3) and PrNi5−xMx (M = Cu, Fe; 0.5 x 2.5) alloys were investigated for their hydriding characteristics in the temperature range 0–70°C and hydrogen pressure range 0.01–50 atm. The nonlinear behaviour of unit cell volume vs x in Ce1–xLaxNi2.5Cu2.5 suggests that both size and electronic effects are involved. The partial replacement of Ce by La and Ni by Cu in CeNi5 causes a substantial reduction in the hydrogen sorption pressures without significantly impairing its hydrogen capacity. It was observed that Fe is more effective than Cu in stabilizing PrNi5-H2. The high values of the molar entropy of hydrogen of the β-hydrides studied, SβH, are attributed to extensive hydrogen disorder in the interstitial sites of the host lattice. A linear correlation between the hydride decomposition pressures (or free energy) and the unit cell volume. Vc, of the host alloys was observed. This behavior is helpful in predicting the stabilities of new hydrides in a given substitutional alloy series.  相似文献   

14.
Single crystals of CuGaxIn1−xSe2 were grown from stoichiometric melt by horizontal Bridgman method. An non-contact carbon coating method was used to avoid sticking between quartz ampoule and the melt. The composition variations along the as-grown ingots were studied as a function of Ga content. X-ray powder diffraction measurements were carried out to determine the lattice constants.  相似文献   

15.
The hydrogen sorption properties of calcium borohydride (Ca(BH4)2) catalyzed with a small amount of TiF3, TiCl3, NbF5 or NbCl5 are investigated using thermal analyses and X-ray diffraction. NbF5 exhibits the best performance among all the catalysts; it causes a decrease in the hydrogen desorption temperature which leads to hydrogen absorption at practical temperature and pressure conditions. The hydrogen content of Ca(BH4)2 with NbF5 reaches about 5.0 wt.% after hydrogen absorption at 693 K for 24 h under 90 bar of hydrogen. The main dehydrogenation product of Ca(BH4)2 with NbF5 is a CaH2−xFx solid solution with a CaF2 (C1) structure, while pure Ca(BH4)2 produces CaH2 after hydrogen desorption.  相似文献   

16.
Uses of layered alkali titanates (A2TinO2n+1; Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) for energy and environmental issues are summarized. Layered alkali titanates of various structural types and compositions are regarded as a class of nanostructured materials based on titanium oxide frameworks. If compared with commonly known titanium dioxides (anatase and rutile), materials design based on layered alkali titanates is quite versatile due to the unique structure (nanosheet) and morphological characters (anisotropic particle shape). Recent development of various synthetic methods (solid-state reaction, flux method, and hydrothermal reaction) for controlling the particle shape and size of layered alkali titanates are discussed. The ion exchange ability of layered alkali titanate is used for the collection of metal ions from water as well as a way of their functionalization. These possible materials design made layered alkali titanates promising for energy (including catalysis, photocatalysts, and battery) and environmental (metal ion concentration from aqueous environments) applications.  相似文献   

17.
The electrochemical performances of Nd0.6Sr0.4Co0.5Fe0.5O3−δ–Ag composite cathodes have been investigated in intermediate temperature solid oxide fuel cells. The Nd0.6Sr0.4Co0.5Fe0.5O3−δ–Ag cathodes prepared by ball milling followed by firing at 920 °C show the maximum performance (power density: 0.15 W cm−2 at 800 °C) at 3 wt.% Ag. On the other hand, the Nd0.6Sr0.4Co0.5Fe0.5O3−δ–Ag composite cathodes with 0.1 mg cm−2 (0.5 wt.%) Ag that were prepared by an impregnation of Ag into Nd0.6Sr0.4Co0.5Fe0.5O3−δ followed by firing at 700 °C (but the electrolyte–Nd0.6Sr0.4Co0.5Fe0.5O3−δ assembly was prepared first by firing at 1100 °C) exhibit much better performance (power density: 0.27 W cm−2 at 800 °C) than the composite cathodes prepared by ball milling, despite a much smaller amount of Ag due to a better dispersion and an enhanced adhesion. AC impedance analysis indicates that the Ag catalysts dispersed in the porous Nd0.6Sr0.4Co0.5Fe0.5O3−δ cathode reduce the ohmic and the polarization resistances due to an increased electronic conductivity and enhanced electrocatalytic activity.  相似文献   

18.
An unsintered nickel plaque containing Li2CO3 and an organic binder were tested as a cathode in a molten-carbonate fuel cell. Organic burnout, nickel oxidation,lithium carbonate decomposition and LixNi1−xO solid-solution formation occurred during the start-up of the cell. The in-cell test showed good performance after a short time of operation, and a limited performance decay after 3500 h.  相似文献   

19.
Barium cerate exhibits high protonic conductivity, especially when modified by trivalent dopant such as Y, Yb, Nd, Sm or Dy. Unfortunately, the poor chemical stability in the presence of CO2 is the main disadvantage of this material. One of the possible approach to get the stable protonic conductor is the preparation of solid solutions. For example, doping of BaCeO3 with Zr leads to the improvement of the chemical stability, but the electrical properties are simultaneously corrupted.In the present work the influence of Ti, per analogy to Zr, and Y dopants on electrical properties of BaCeO3 was investigated using the electrochemical impedance spectroscopy (EIS) technique. BaCe1−xTixO3−δ (0 ≤ x ≤ 0.3) and Ba(Ce0.95Ti0.05)0.95Y0.05O3−δ solid electrolytes were prepared by solid-state reaction method. It was found that the changes of electrical properties due to the introduction of Ti into the BaCeO3 lattice is caused predominantly by the modification of the grain boundary properties. The Ti doping leads to the substantial decrease of grain boundary electrical conductivity, comparing to undoped material. The introduction of yttrium dopant to the BaCe0.95Ti0.05O3 lattice has the opposite effect. The total electrical conductivity increases, due to significant modification of grain boundary electrical properties.  相似文献   

20.
《Solar Energy》2000,68(6):523-540
Layered LixCoO2 and LixNiO2 thin films (x1) were prepared by a peroxo wet chemistry route from Li(I), Co(II) and Ni(II) acetate precursors and the addition of H2O2. Structural changes during the processing of xerogel to final oxide were followed by X-ray diffraction and infrared spectroscopy. Electrochromic properties were determined with in-situ potentiodynamic, potentiostatic and galvanostatic spectroelectrochemical measurements. Single dipped films with composition Li0.99Co1.01O2 or Li0.94Ni1.06O2 exhibited stable voltammetric response in 1 M LiClO4/propylene carbonate electrolyte after about 60 cycles. The total charge exchanged in a reversible charging/discharging cycle was about ±30 mC cm−2 for Li0.99Co1.01O2 and ±20 mC cm−2 for Li0.94Ni1.06O2 oxide films. Galvanostatic measurements showed that about 1/2 (x0.5) and 2/3 (x0.3) of Li+ ions could be reversibly removed from the structure of Li0.99Co1.01O2 and Li0.94Ni1.06O2 films, respectively. Practical applicability of Li0.99Co1.01O2 and Li0.94Ni1.06O2 oxide films was studied in electrochromic devices with WO3(H+)Li+ormolyteLi0.99Co1.01O2 and WO3(H+)Li+ormolyteLi0.94Ni1.06O2 configuration. The monochromatic transmittance Ts (λ=633 nm) of dark blue coloured devices was extremely low (Ts3%), whereas in bleached state the value reached around Ts70%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号