首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Probucol is a powerful inhibitor of atherosclerosis in a number of animal models. However, it is unknown whether this is due to the strong antioxidant protection of low density lipoprotein (LDL), to antioxidant effects in the artery wall, or to cellular effects not shared by other antioxidants. To investigate whether murine models are suitable to study the antiatherogenic mechanisms of probucol, three experiments following different protocols were carried out in 135 male and female LDL receptor-deficient (LDLR-/-) mice. Treatment groups received a high (0.5%) or low (0.025%) dose of probucol, or low-dose probucol plus a high dose (0.1%) of vitamin E for periods ranging from 6 to 26 weeks. In all experiments, probucol strongly protected LDL against ex vivo oxidation (lag times exceeding 1400 min in 0.5% probucol-treated mice). Treatment with 0.5% probucol significantly lowered both HDL-cholesterol and plasma apolipoprotein (apo)A-I concentrations. In all three experiments, treatment with 0.5% probucol consistently increased the size of lesions in the aortic origin, from 1.3-fold (n.s.) to 2.9-fold (P < 0.05) in female mice and from 3.6- to 3.7-fold in males (P < 0.001). Even treatment with 0.025% probucol increased atherosclerosis 1.6-fold in male mice (P < 0.01). Addition of the high dose of vitamin E did not attenuate the pro-atherogenic effect of 0.025% probucol. In conclusion, probucol not only failed to decrease but actively increased atherogenesis in LDLR-/- mice in a dose-dependent manner, even though it provided a very strong antioxidant protection of LDL. This suggests that the reduction of atherosclerosis observed in other animal models is due to intracellular effects of probucol not found in mice, to differences in the metabolism of probucol, and/or to an overriding atherogenic effect of the decrease in HDL in murine models.  相似文献   

2.
In this observational study, multiplanar three-dimensional ultrasound images were reconstructed from tomographic views obtained by scanning seven cadavaric fetal hearts with various congenital heart defects. Comparisons were made with multiplanar three-dimensional magnetic resonance imaging (MRI) of the hearts. Good-quality echocardiographic images were obtained in all but one of the fetal hearts. Multiplanar as well as three-dimensional reconstructions were possible and allowed accurate assessment of complex cardiac defects. Overall, the MRI projections had better image quality and revealed more structural details than the sonographic views, although both imaging modes showed the same cardiac anatomical abnormalities. Our initial results demonstrate that simultaneous multiplanar display of cross-sectional echocardiographic views can be performed to provide three-dimensional images of the fetal heart, demonstrating structural cardiac malformation. However, the clinical application of three-dimensional fetal echocardiography is at present limited by the time required for image data acquisition and the need for accurate temporal and positional gating in the living fetus.  相似文献   

3.
BACKGROUND: We have previously reported the finding of an acute increment in the susceptibility of low-density lipoprotein (LDL) to oxidation and in the proportion of electronegative LDL [LDL(-)] after intense exercise. We have now studied the effect of oral supplementation with 1 g ascorbic acid, immediately before a 4-h athletic race, on the susceptibility of LDL to oxidation, the proportion of LDL(-), and the alpha-tocopherol and lipid peroxides content in LDL, in order to inhibit such deleterious changes, and to confirm the oxidative nature of modifications of LDL induced by exercise. METHODS: We studied seven highly trained runners who received a supplement of 1 g ascorbic acid and a control group of seven who did not receive the supplement. The susceptibility of LDL to oxidation was assessed by measurement of conjugated dienes after CuSO4-induced oxidation, the proportion of LDL(-) was determined by anion exchange chromatography, alpha-tocopherol was quantified by reverse-phase high performance liquid chromatography, and lipid peroxides were measured by the thiobarbituric acid-reactive substances (TBARS) method. RESULTS: After exercise, in the control group there was an increase in both the susceptibility of LDL to oxidation (change in lag phase from 51.4 +/- 4.7 min to 47.0 +/- 4.6 min, P < 0.05) and the proportion of LDL(-) (from 11.1 +/- 1.4% to 13.0 +/- 2.2%, P < 0.05), but these did not occur in the ascorbic acid group (change in lag phase from 49.7 +/- 2.3 min to 50.4 +/- 4.2 min, and in LDL(-) from 9.7 +/- 1.7% to 10.1 +/- 1.7%). No significant changes in the absolute amount of LDL alpha-tocopherol were observed after exercise (ascorbic acid group: 6.65 +/- 0.94 mol/mol apoB before the race, 7.13 +/- 0.88 mol/mol apoB after the race; control group: 7.34 +/-0.69 mol/mol apoB before the race, 7.06 +/- 0.69 mol/mol apoB after the race), but significant differences were found when increments or decrements of alpha-tocopherol were tested (alpha-tocopherol increased 9.9 +/- 11.5% in the ascorbic acid group, and decreased 0.6 +/- 7.3% in the control group; P < 0.018). TBARS did not change after exercise. CONCLUSIONS: We conclude that 1 g ascorbic acid inhibits the increase in LDL susceptibility to oxidation after exercise, preventing this acute pro-atherogenic effect. In addition, the observation that LDL(-) enhancement is prevented by ascorbic acid supports the hypothesis that at least some of the circulating LDL(-) originates from oxidative processes.  相似文献   

4.
In order to investigate the effect of cycloartenol ferulic acid ester (CFE, CAS 21238-33-5), a component of gamma-oryzanol which is a phytosterol derived from rice bran, on the central nervous system, a variety of pharmacological tests were performed. It was shown that CFE had a suppressant effect on the central nervous system, but its properties were different from those of existing major and minor tranquilizers. In addition, its efficacy in several models of cerebral dysfunction was demonstrated. Since any clear effects could not be obtained under the treatments with gamma-oryzanol, CFE seems to be more useful than gamma-oryzanol. Thus the results of this study suggest that CFE may serve as a new plant-derived cerebral activator possessing a wide range of pharmacological actions.  相似文献   

5.
6.
OBJECTIVE: Serum gamma-glutamyltransferase (GGT) levels are raised in obese individuals, and a particularly strong association with central obesity has been described. We hypothesized that elevated GGT levels are a marker for visceral fat, and specifically for hepatic steatosis (fatty liver), and that hepatic steatosis leads to hepatic insulin resistance. To test this hypothesis, we examined the association between GGT levels and risk of NIDDM. RESEARCH DESIGN AND METHODS: We carried out a prospective cohort study of incident cases of doctor-diagnosed NIDDM in a group of 7,458 nondiabetic men (aged 40-59 years) followed for a mean of 12.8 years (range 11.5-13.0). The men were randomly selected from general practice lists in 24 British towns. Cases of NIDDM were ascertained by repeated postal questionnaires to the men and by regular systematic review of primary care records. RESULTS: A total of 194 men developed NIDDM during follow-up. Mean serum GGT at baseline (geometric mean [95% CI]) was significantly higher in the NIDDM patients than in the rest of the cohort (20.9 [19.3-22.6] vs. 15.3 U/l [15.0-15.6], P < 0.0001). There was a smooth, graded increase in the age-adjusted risk of NIDDM with increasing GGT levels, with a relative risk in the top fifth of the distribution of 6.8 (3.5-12.9) relative to the bottom fifth (trend P < 0.0001). This association was independent of serum glucose and BMI and of other predictors of NIDDM with which GGT is associated, including alcohol intake and physical activity level (adjusted upper to lower fifth relative risk: 4.8 [2.0-11.8], trend P < 0.0001]). CONCLUSIONS: These findings suggest that a raised serum GGT level is an independent risk factor for NIDDM. Serum GGT level may be a simple and reliable marker of visceral and hepatic fat and, by inference, of hepatic insulin resistance.  相似文献   

7.
Carotenoids and alpha-tocopherol are dietary, lipophilic antioxidants that may protect plasma lipoproteins from oxidation, a process believed to contribute to atherogenesis. Previous work demonstrated that after the Cu(II)-initiated oxidation of human low density lipoprotein (LDL) in vitro, carotenoids and alpha-tocopherol were destroyed before significant lipid peroxidation took place, and that alpha-tocopherol was destroyed at a much faster rate than were the carotenoids. Additionally, in vitro enrichment of LDL with beta-carotene, but not with lutein or lycopene, inhibited LDL oxidation. In the present studies the impact of LDL carotenoid and alpha-tocopherol content on LDL oxidation by human endothelial cells (EaHy-1) in culture was assessed. LDL isolated from 11 individual donors was incubated at 0.25 mg protein/mL with EaHy-1 cells in Ham's F-10 medium for up to 48 h. Formation of lipid hydroperoxides was assessed by chemical analysis and the contents of lutein, beta-cryptoxanthin, lycopene, beta-carotene and alpha-tocopherol were determined by high performance liquid chromatography. The extent of lipid peroxidation correlated with the endogenous alpha-tocopherol content of the LDL but not with its content of carotenoids. As in the Cu(II)-initiated system, carotenoids and alpha-tocopherol were destroyed before significant peroxidation took place, but, in the cell-mediated system, alpha-tocopherol and the carotenoids were destroyed at comparable rates. Also, like the Cu(II)-initiated oxidation, enrichment of the LDL with beta-carotene protected it from oxidation by the endothelial cells. However, enrichment with either lutein or lycopene actually enhanced the cell-mediated oxidation of the LDL. Thus, the specific content of carotenoids in low density lipoprotein (LDL) clearly modulates its susceptibility to oxidation, but individual carotenoids may either inhibit or promote LDL oxidation.  相似文献   

8.
OBJECTIVE: Insulin resistance is associated with a predominance of small, atherogenic LDL particles that are more prone to oxidative modification. Treatment with the insulin-sensitizer troglitazone may improve LDL composition and resistance to oxidation. RESEARCH DESIGN AND METHODS: In a randomized double-blind crossover design, 15 obese subjects were treated with either 400 mg troglitazone daily or placebo for 8 weeks. Insulin sensitivity (clamp), (apo)lipoproteins, LDL subclass pattern, plasma TBARS, and ex vivo LDL oxidation were determined. RESULTS: Troglitazone treatment improved insulin sensitivity. LDL cholesterol increased from 2.58 +/- 0.18 to 2.77 +/- 0.20 mmol/l (P = 0.03) because of an increase in large (buoyant) LDL1 (from 0.45 +/- 0.04 to 0.62 +/- 0.09 mmol/l, P = 0.008). Because small (dense) LDL3 decreased, LDL1:LDL3 ratio increased (P = 0.02). Plasma TBARS concentration declined significantly, and the lag time of ex vivo LDL oxidation showed a small but significant increase. CONCLUSIONS: In obese subjects, treatment with troglitazone improves insulin sensitivity, increases the ratio of large buoyant to small dense LDL, and appears to enhance the resistance of the LDL particle to oxidation. These qualitative changes in lipoproteins may have a beneficial effect on cardiovascular risk profile and compensate for a small increase in LDL cholesterol.  相似文献   

9.
The inhibitory effects of glabridin, an isoflavan isolated from licorice (Glycyrrhiza glabra) root, and its derivatives on the oxidation of LDL induced by copper ions or mediated by macrophages were studied, in order to evaluate the contribution of the different parts of the isoflavan molecule to its antioxidant activity. The peak potential (E1/2) of the isoflavan derivatives, their radical scavenging capacity toward 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical and their ability to chelate heavy metals were also analyzed and compared to their inhibitory activity on LDL oxidation. In copper ion-induced LDL oxidation, glabridin (1), 4'-O-methylglabridin (2), hispaglabridin A (3), and hispaglabridin B (4), which have two hydroxyl groups at positions 2' and 4' or one hydroxyl at position 2' on ring B, successfully inhibited the formation of conjugated dienes, thiobarbituric acid reactive substances (TBARS) and lipid peroxides, and inhibited the electrophoretic mobility of LDL under oxidation. Compounds 1-3 exhibited similar activities, whereas compound 4 was less active. In macrophage-mediated LDL oxidation, the TBARS formation was also inhibited by these isoflavans (1-4) at a similar order of activity to that obtained in copper ion-induced LDL oxidation. On the other hand, 2'-O-methylglabridin (5), a synthesized compound, whose hydroxyl at 2'-position is protected and the hydroxyl at 4'-position is free, showed only minor inhibitory activity in both LDL oxidation systems. 2',4'-O-Dimethylglabridin (6), whose hydroxyls at 2'- and 4'-positions are both protected, was inactive. Resorcinol (7), which is identical to the phenolic B ring in glabridin, presented low activity in these oxidation systems. The isoflavene glabrene (8), which contains an additional double bond in the heterocyclic C ring, was the most active compound of the flavonoid derivatives tested in both oxidation systems. The peak potential of compounds 1-5 (300 microM), tested at pH 7.4, was similar (425-530 mV), and that for compound 6 and 8 was 1078 and 80 mV, respectively. Within 30 min of incubation, compounds 1, 2, 3, 4, 8 scavenged 31%, 16%, 74%, 51%, 86%, respectively, of DPPH radical, whereas compounds 5 and 6, which almost did not inhibit LDL oxidation, also failed to scavenge DPPH. None of the isoflavan derivatives nor the isoflavene compound were able to chelate iron, or copper ions. These results suggest that the antioxidant effect of glabridin on LDL oxidation appears to reside mainly in the 2' hydroxyl, and that the hydrophobic moiety of the isoflavan is essential to obtain this effect. It was also shown that the position of the hydroxyl group at B ring significantly affected the inhibitory efficiency of the isoflavan derivatives on LDL oxidation, but did not influence their ability to donate an electron to DPPH or their peak potential values.  相似文献   

10.
Melatonin has been suggested as a potent antioxidant that may protect against development of atherosclerosis and cancer; however, these effects are unproven and controversial. The antioxidant capacity of melatonin was tested in comparison with alpha-tocopherol, ascorbic acid, and the melatonin precursors tryptophan and serotonin, by measuring inhibition of metal ion-mediated and human macrophage-mediated oxidation of LDL. Melatonin had weak antioxidant activity that was detectable only at concentrations 10000- to 100000-fold higher than physiologic concentrations. These results were comparable with published data showing that the radical scavenging activity of melatonin requires markedly supraphysiologic concentrations. In contrast, alpha-tocopherol was 50- to 100-fold more potent and was efficacious at physiologic concentrations. Ascorbic acid and tryptophan also were active at physiologic concentrations and were significantly more potent than melatonin. In summary, extremely supraphysiologic concentrations of melatonin had only weak antioxidant activity, which was surpassed by alpha-tocopherol, ascorbic acid, and tryptophan.  相似文献   

11.
There is considerable evidence to suggest that cytokines modulate the pathological cellular events that occur in human atherosclerosis. We sought to determine the effects of T-helper-lymphocyte (TH)-1- and TH2-type cytokines on the ability of human monocytes to oxidize LDL, one of the pathological processes believed to occur in atherosclerosis. The ability of opsonized zymosan (ZOP)-activated human monocytes to oxidize LDL in a 24-hour period was significantly enhanced by pretreatment of the monocytes with the TH2 cytokines, interleukin (IL)-4, or IL-13 compared with untreated monocytes. In contrast, interferon (IFN)-gamma, a TH1 cytokine, inhibited LDL oxidation by activated monocytes. Treatment with IFN-gamma also prevented the IL-4- and IL-13-mediated enhancement of LDL oxidation by ZOP-activated monocytes. Untreated or cytokine-treated unactivated monocytes did not oxidize LDL. The enhancement of LDL oxidation mediated by IL-4 or IL-13 treatment was not due to a mitogenic effect of the cytokines on the monocytes, nor to modulation of superoxide anion (O2-) production. The cytokine regulation of 15-lipoxygenase (LO) in the monocytes was also examined. IL-4 and IL-13 induction of 15-LO mRNA and 15-LO activity in the monocytes was confirmed, as was the previously reported inhibition of induction by IFN-gamma. In summary, IL-4 and IL-13 enhance the ability of activated human monocytes to oxidize LDL, whereas IFN-gamma inhibits the cell-mediated oxidation. The up- and downregulation of activated monocyte-mediated LDL oxidation by these cytokines correlates with the expression of 15-LO activity. Considerable evidence suggests that the progression of atherosclerosis includes events that are immunologically mediated, lending potential physiological relevance to these in vitro observations.  相似文献   

12.
Free radical-mediated oxidation of cholesterol-rich LDL plays a key role in atherogenesis and involves the formation of oxidized phospholipids with proinflammatory biological activity. We evaluated the production of platelet-activating factor (PAF), a potent inflammatory mediator, in human LDL subspecies on copper-initiated oxidation (4 mumol/L CuCl2, 80 micrograms/mL for hours at 37 degrees C). PAF formation was determined by biological assay of HPLC-purified lipid extracts of copper-oxidized lipoproteins; chemical identity was confirmed by gas chromatographic and mass spectrometric analyses. PAF, characterized as the C16:0 molecular species, was preferentially produced in intermediate LDL (d = 1.029 to 1.039 g/mL) (8.6 +/- 5.7 pmol PAF/3 h per mg LDL protein) and light LDL (d = 1.019 to 1.029 g/mL), but was absent from dense LDL particles (d = 1.050 to 1.063 g/mL). As PAF:acetylhydrolase inactivates PAF and oxidized forms of phosphatidylcholine, we evaluated the relationship of lipoprotein-associated PAF:acetylhydrolase to PAF formation. We confirmed that PAF:acetylhydrolase activity was elevated in native, dense LDL (41.5 +/- 9.5 nmol/min per mg protein) but low in LDL subspecies of light and intermediate density (d 1.020 to 1.039 g/mL) (3.5 +/- 1.6 nmol/min per mg protein) [Tselepis et al, Arterioscler Thromb Vasc Biol. 1995;15:1764-1773]. On copper-mediated oxidation for 3 hours at 37 degrees C, dense LDL particles conserved 20 +/- 14% of their initial enzymatic activity; in contrast, PAF:acetylhydrolase activity was abolished in light and intermediate LDL subspecies. Clearly, the elevated PAF:acetylhydrolase activity of dense LDL efficiently diminishes the potential inflammatory role of endogenously formed PAF; nonetheless, formation of proatherogenic lysophospholipids results. In contrast, LDL particles of the light and intermediate subclasses can accumulate PAF on oxidative modification.  相似文献   

13.
Distinol, ionol and dimethylsulphoxide were investigated in model reaction of thermal oxidation of methyl oleate for their antioxidant activity and for their influence on the rate of malonic dialdehyde formation in the liver tissue of chicken with E-hypovitaminosis in vitro. It has been found that the level of antioxidant activity in the homogeneous system of methyl oleate oxidation permits arranging the preparations studied in a series: ionol > distinol > dimethylsulphoxide. Distinol inhibits peroxidation of lipids in the liver homogenates of chicken most efficiently. Its inhibitory effect is 4.6 times higher than that of dimethylsulphoxide and 1.3 times higher than that of ionol. No correlation was found between antioxidant activity of distinol in the homogeneous model system and its influence on peroxidation of lipids in biomembranes.  相似文献   

14.
Much data have accrued in support of the concept that oxidation of LDL is a key early step in atherogenesis. The most consistent data with respect to micronutrient antioxidants and atherosclerosis appear to relate to alpha-tocopherol (AT), the predominant lipid-soluble antioxidant in LDL. There are scant data on the direct comparison of RRR-AT and all-racemic (rac)-AT on LDL oxidizability. Hence, the aim of the present study was to examine the relative effects of RRR-AT and all-rac-AT on plasma antioxidant levels and LDL oxidation in healthy persons in a dose-response study. The effect of RRR-AT and all-rac-AT at doses of 100, 200, 400, and 800 IU/d on plasma and LDL AT levels and LDL oxidation was tested in a randomized, placebo-controlled study of 79 healthy subjects. Copper-catalyzed oxidation of LDL was monitored by measuring the formation of conjugated dienes and lipid peroxides over an 8-hour time course at baseline and again after 8 weeks. Plasma AT, lipid-standardized AT, and LDL AT levels rose in a dose-dependent fashion in both the RRR-AT and all-rac-AT groups compared with baseline. There were no significant differences in plasma, lipid-standardized, and LDL AT levels between RRR-AT and all-rac-AT supplementation at any dose comparison. The lag phases of oxidation were significantly prolonged with doses > or = 400 IU/d of RRR-AT and all-rac-AT, as measured by conjugated-dienes assay and at 400 IU/d of RRR-AT and 800 IU/d of both forms of AT by lipid peroxide assay. Again, there were no significant differences in the lag phase of oxidation at each dose for RRR-AT when compared with all-rac-AT. Also, there were no significant differences in LDL oxidation after in vitro enrichment of LDL with RRR-AT and all-rac-AT. Thus, supplementation with either RRR-AT or all-rac-AT resulted in similar increases in plasma and LDL AT levels at equivalent IU doses, and the degree of protection against copper-catalyzed LDL oxidation was only evident at doses > or = 400 IU/d for both forms.  相似文献   

15.
Low density lipoproteins (LDL) from hypertensive patients are more prone to in vitro oxidation and undergo a more pronounced oxidation in vivo. Due to the pro-atherogenic activity of oxidatively modified LDL, the correlation between the carotid intima-media thickening (IMT) and the markers of in vivo LDL oxidation was investigated in hypertensive patients. A cross-sectional study on 101 normocholesterolemic patients with newly diagnosed and untreated essential hypertension was performed. The occurrence of in vivo LDL oxidation was evaluated by measuring the titers of autoantibodies against Cu(2+)-oxidised LDL (oxLDL) and malondialdehyde-derivatised LDL (MDA-LDL). The extent and degree of atherosclerosis and the IMT were measured by means of carotid and femoral ultrasonography with a duplex scanner equipped with a high resolution probe. We did not find significant correlations between in vivo LDL oxidation parameters and the extent of atherosclerotic lesion in the entire group of hypertensive patients. However, a significant direct correlation was detected between the carotid IMT and the titer of autoantibodies against both oxLDL and MDA-LDL in hypertensive patients without advanced atherosclerotic plaques. The results obtained support the hypothesis that enhanced LDL oxidation may be one of the pathophysiological events related to the formation and progression of early atherosclerotic lesions (IMT) in carotid arteries of hypertensive patients.  相似文献   

16.
A ferulic acid decarboxylase enzyme which catalyzes the decarboxylation of ferulic acid to 4-hydroxy-3-methoxystyrene was purified from Pseudomonas fluorescens UI 670. The enzyme requires no cofactors and contains no prosthetic groups. Gel filtration estimated an apparent molecular mass of 40.4 (+/- 6%) kDa, whereas sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a molecular mass of 20.4 kDa, indicating that ferulic acid decarboxylase is a homodimer in solution. The purified enzyme displayed an optimum temperature range of 27 to 30 degrees C, exhibited an optimum pH of 7.3 in potassium phosphate buffer, and had a Km of 7.9 mM for ferulic acid. This enzyme also decarboxylated 4-hydroxycinnamic acid but not 2- or 3-hydroxycinnamic acid, indicating that a hydroxy group para to the carboxylic acid-containing side chain is required for the enzymatic reaction. The enzyme was inactivated by Hg2+, Cu2+, p-chloromercuribenzoic acid, and N-ethylmaleimide, suggesting that sulfhydryl groups are necessary for enzyme activity. Diethyl pyrocarbonate, a histidine-specific inhibitor, did not affect enzyme activity.  相似文献   

17.
High-molecular-weight polymers were produced by a crude concentrated supernatant from ligninolytic Phanerochaete chrysosporium cultures in a reaction mixture containing pentachlorophenol and a humic acid precursor (ferulic acid) in the presence of a detergent and H2O2. Pure manganese peroxidase, lignin peroxidase, and laccase were also shown to catalyze the reaction.  相似文献   

18.
The stability of ferulic acid esterase III (FAE-III) from Aspergillus niger was examined using chemical and thermal denaturation. Thermal denaturation was irreversible and the loss of activity was dependent on pH. At 60 degrees C and pH 6.0, the rate constant of unfolding was 0.76 10(-3)/s, and the change in free energy of irreversible inactivation, deltaG*, was 101.9 kJ/mol. Sinapic acid, a product of the reaction of methyl sinapate with FAE-III, reduced the rate of unfolding (0.66 10(-3)/s at 0.1 mM sinapic acid). Chemical denaturation was performed using guanidine hydrochloride. FAE-III was very sensitive to this denaturant, and the midpoint of unfolding was 1.38 M guanidine hydrochloride at 30 degrees C, pH 6.0. The stability of FAE-III is compared to other enzymes.  相似文献   

19.
The antioxidant effects of 17beta-estradiol, its main A- and D-ring metabolites, and of vitamin E were compared in vitro. Low density lipoprotein (LDL) was isolated from fresh human blood, and LDL oxidation was evaluated spectrometrically by monitoring diene formation of fatty acids. All substances tested exhibited antioxidant potential. The A-ring metabolites (catecholestrogens) emerged as more potent inhibitors of LDL oxidation than the parent substance estradiol, its D-ring metabolites, and vitamin E. Since oxidized LDL seems to play a crucial role in the development of atherosclerosis, its inhibition may be of preventive value. In summary, A-ring metabolites of estradiol (catecholestrogens), substances that occur naturally in the body, may be involved in the physiologic inhibition of LDL oxidation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号