首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
基于有限单元法,对某轻型货车驱动桥壳开展了有限元分析.利用SolidWorks建立了该驱动桥壳的三维模型,将该三维模型导入Workbench的静力学分析模块中进行有限元分析.根据不同工况特点,在驱动桥壳上施加了相应的约束和载荷.对满载静止工况、最大驱动力工况、最大制动力工况和最大侧向力工况的应力应变进行分析.结果表明:...  相似文献   

2.
汽车驱动桥桥壳强度与模态的有限元分析   总被引:2,自引:2,他引:2  
介绍了汽车驱动桥桥壳结构强度和模态有限元分析的研究背景,论述了ANSYS Workbench软件的有限元分析功能和优点。采用三维CAD软件UG建立了汽车驱动桥桥壳的三维几何模型,然后将其导入ANSYS Workbench软件中进行了结构强度和模态有限元分析。仿真结果表明,汽车驱动桥桥壳的强度满足设计要求,并且具有良好的抗振性。  相似文献   

3.
基于ANSYS重型商用车驱动桥壳有限元分析   总被引:1,自引:0,他引:1  
姜武华  李强 《机械》2007,34(11):38-40
驱动桥是汽车中的重要部件,应具有足够的强度和刚度,针对某重型商用车后驱动桥出现局部开裂现象,首先在UG中建立了该桥壳几何模型,然后在Hyper Mesh软件中进行网格划分,最后将其导入到ANSYS有限元分析软件中加载和约束,对该商用车后驱动桥壳进行了有限元分析计算,并提出改进方案.  相似文献   

4.
基于ANSYS汽车驱动桥壳的有限元分析   总被引:4,自引:0,他引:4  
首先介绍了有限元法的应用,然后利用有限元分析软件ANSYS对某汽车驱动桥壳进行分析和计算,并简要分析了驱动桥壳强度计算的传统方法,得出有限元法的诸多优点。  相似文献   

5.
针对某型号电动铲运机桥壳强度计算的工程问题,利用面向特征的建模方法,建立了桥壳的三维几何模型和有限元分析模型,得出了有限元分析结果;并通过与简化的强度计算方法进行比较,说明了有限元计算方法在工程分析中的可靠性以及它具有的明显优势。  相似文献   

6.
建立一种改装载货汽车大梁3D模型,导入到有限元分析软件并进行几何模型的离散和单元类型选择、边界条件的处理、载荷处理等,将分析结果应用于该车大梁第3、4横梁连接处和在安装垫木处大梁局部加固等结构改进设计上,提升了该车型改装后的大梁强度和刚度。  相似文献   

7.
悬架系统是保证重型载货汽车行驶平顺性和操纵稳定性的重要部件,空气悬架系统以其高强度、高舒适性和高吸振性能力等优点将在重型载货车上得到广泛应用.建立重型载货汽车1/2车辆仿真模型,采用Matlab/Simulink的仿真平台开发了随机路面输入下的重型载货汽车空气悬架仿真分析系统,用于分析空气悬架各主要性能参数对重型载货汽车动态响应的影响,并为空气悬架系统的设计匹配提供依据.  相似文献   

8.
利用Solidworks软件在计算机上建立某汽车驱动桥壳3D模型。基于ANSYS W orkbench协同仿真平台,按国家驱动桥壳台架试验的标准,在计算机中模拟某车驱动桥不同厚度桥壳台架试验。分析结果表明,该系列厚度桥壳都具有足够的静强度和刚度,疲劳寿命达到国家标准。  相似文献   

9.
《机械传动》2015,(4):142-146
为了进一步缩短自卸车驱动桥壳产品的研发周期和提高企业生产效率,提出一种基于实际路测参数并将ADAMS与AWB共同运用于桥壳有限元分析的自卸车驱动桥壳设计方法,研究了桥壳基于实测道路参数下的应力应变规律,并分析了载荷大小和载荷频率对桥壳寿命的影响规律。分析结果表明,自卸车驱动桥壳应力较大区域主要集中在桥壳左右两侧与轮边连接区域;自卸车驱动桥壳疲劳寿命循环次数及损伤因子最小值出现在桥壳轮边区域;载荷幅值变化对桥壳寿命影响较小,载荷频率变化对桥壳寿命影响明显。  相似文献   

10.
近几年,世界发达国家各商用车制造商纷纷投巨资研制新一代产品,通过采用高新技术,最大限度地提升重型汽车产品技术水平。产品技术进展主要是:通过加强车辆的行驶系统,实现车辆的高吨位化;通过改进驾驶室的内饰和外观,实现车辆的高档化;通过改进发动机技术,实现车辆的低排放和节能目的,并日趋大功率化;通过采用机电一体化装置,提高车辆的安全性和轻便性;通过采用多轴行驶系或空气悬架结构,满足车辆的轴荷限值和提高行驶平顺性的要求。  相似文献   

11.
随着中国国民经济高速发展,汽车工业已迈入新时代,重型载货车的需求量大大增加,对重型汽车的性能要求越来越高,这使得传统的驱动桥桥壳设计计算方法已经无法满足现代汽车设计的要求。由于驱动桥桥壳是汽车的重要承载件和传动件,是维系车辆运行安全的关键部件,桥壳的性能和疲劳寿命直接影响汽车的有效使用寿命。因此,驱动桥壳应具有足够的强度、刚度和良好的疲劳耐久特性。本论文以某货车的驱动桥壳为研究对象,提出了桥壳几何模型的简化方法,利用PRO/E建模软件建立了桥壳的有限元计算模型,并联合有限元分析软件ANSYS对桥壳进行了强度计算和有限元模拟分析,得出了零件的应力和变形分布,验证了设计的合理性,为汽车驱动桥的强度评价提供了相关数据。  相似文献   

12.
在UG软件中建立了某轻型货车驱动桥壳的三维实体模型;然后导入ANSYS软件中进行网格划分,根据其不同的工况(最大垂向力、最大牵引力和最大侧向力)添加载荷、求解计算,分析了桥壳在不同工况下的应力和变形。有限元分析结果表明,桥壳内的最大应力小于许用应力值,满足强度要求,同时桥壳的每米轮距最大变形量小于国标规定的1.5mm/m,满足刚度要求。  相似文献   

13.
《机械传动》2016,(11):161-164
为了解决宽体矿用自卸车驱动桥壳在工作路况下出现的疲劳破坏问题,通过对车辆工作路况轴头振动/轴头激励信息进行采集,并结合有限元计算方法对宽体矿用自卸车驱动桥壳应力、变形及疲劳寿命等特性进行研究,获得一种针对重载宽体矿用自卸车驱动桥壳力学特性的分析方法。分析结果表明,通过结合实测大波形轴头振动/轴头激励数据得到的本型重载宽体矿用自卸车驱动桥壳应力、变形、最小安全系数及最小寿命等均满足材料及设计规范要求,可靠性相对较高;在重载宽体矿用自卸车驱动桥壳有限元计算模型引入采集得到的大波形轴头振动/轴头激励数据,进一步提高了虚拟样机环境下分析计算与实际环境的贴合程度,为后续虚拟样机环境下驱动桥壳设计分析和改型提供一定参考。  相似文献   

14.
常江 《机械管理开发》2012,(5):64-64,67
介绍了重卡变速器壳体强度分析的步骤.应用Pro/E软件建立三维数模,应用ANSYS Workbench软件对壳体进行有限元分析.通过对ANSYS Workbench后处理数据进行分析,得出重卡变速器壳体应力、变形的分布情况,为重卡变速器壳体的进一步优化提供了依据.  相似文献   

15.
杨利辉 《机械传动》2014,(11):157-161
为了解决轮式挖掘机驱动桥在实际工况下桥壳破坏失效问题,通过使用在实际工况条件下所采集的载荷变化数据,结合Palmgren-Miner理论对轮式挖掘机驱动桥壳工作特征进行有限元计算,研究了轮式挖掘机驱动桥壳疲劳失效规律,提出了一种针对轮式挖掘机驱动桥壳疲劳寿命有限元分析方法。分析结果表明:分析实测载荷变化数据后发现轮式挖掘机驱动桥壳受力过程存在明显的阶段性特征;通过将实际工况测定载荷变化数据作为轮式挖掘机驱动桥壳疲劳寿命计算依据,使得有限元计算方法更加贴合实际;运行路面的坡度和左右两侧桥壳载荷转移系数对桥壳的应力分布有较大的影响。  相似文献   

16.
《机械传动》2016,(11):131-134
为了验证某卡车驱动桥壳的工作特性,基于有限元方法对其驱动桥壳进行强度分析,当其6倍满载轴荷时,其最大应力超过材料抗拉极限,通过增大桥壳的倒角并且垂直距离提高10 mm优化之后,其最大应力为549.0 MPa,降低了10%。采用S-N方法对该驱动桥壳的优化方案进行疲劳寿命预测分析,其最小寿命为1.57×10~6次,大于国标要求的8×10~5次。优化之后的桥壳的第一阶自由模态频率和第一阶约束模态频率分别为101.5 Hz和125.9 Hz,均处于驱动桥旋转激励频率范围之外,将会有效避免其发生共振。优化之后驱动桥壳的每米最大变形为1.097 mm/m,小于国标要求的1.5 mm/m,因此其优化方案的刚度、模态、强度及疲劳均满足要求。  相似文献   

17.
利用有限元分析软件ANSYS建立了某型号轮式装栽杌焊接结构驱动桥壳的有限元分析模型,对桥壳进行了3种典型工况的分析计算,获得了该结构桥壳在各工况下的变形和应力分布,结果表明桥壳能满足各工况工作要求,为下一步的结构优化设计提供了理论依据.  相似文献   

18.
庹前进 《机械传动》2015,(3):141-144
针对载重汽车制造成本高以及行驶过程中油耗大等问题,根据有限元理论,对载重车驱动后桥桥壳进行轻量化设计,并将轻量化计算结果导入有限元分析软件,研究桥壳优化前后在最大载荷不平路面行驶工况下应力变形、安全系数变化情况。研究结果表明:桥壳厚度在尺寸优化后,轮边部位、板簧座到桥芯过渡区域及桥芯区域桥壳厚度整体呈现下降趋势,轮边到板簧过渡区域桥壳厚度基本保持不变;桥壳厚度在尺寸优化后,体积由初始值0.043m3,下降至0.034 3m3;尺寸优化后桥壳应力变形、安全系数均与优化前差异较小,表明轻量化桥壳满足使用要求。  相似文献   

19.
建立了SGA3723型矿用汽车驱动桥壳及A形架的有限元模型,对极限工况利用ANSYS软件进行了结构强度分析,计算出危险点的最大应力值。结果表明,该驱动桥壳和A型架的应力符合强度要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号