首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用电化学测试方法研究了焦磷酸盐溶液体系在铜电极表面电沉积Cu及Cu–Sn合金(低Sn)的电化学行为。探讨了添加剂JZ-1对电沉积Cu和Cu–Sn合金的影响,并对电沉积层的表面形貌和晶相结构进行分析。结果表明,焦磷酸盐溶液体系电沉积Cu及Cu–Sn合金均为不可逆电极过程,发生电化学极化。电沉积Cu的阴极过程表现为前置转化反应很快和以CuP22 O-7直接还原的反应机理形式。电沉积Cu–Sn合金过程中Cu与Sn之间存在相互作用,溶液中的Cu2+与Sn2+也存在相互促进电沉积的作用,Cu–Sn合金的晶相结构为Cu13.7Sn。添加剂JZ-1具有促进Cu电沉积和抑制Sn电沉积的双重作用,有利于降低Cu–Sn合金中的Sn含量并细化晶粒。  相似文献   

2.
通过测定阴极极化曲线和循环伏安曲线,研究了焦磷酸盐溶液体系在铜电极上电沉积白铜锡的电化学行为,并分析了不同添加剂对电沉积白铜锡阴极过程和电沉积层晶相结构的影响。结果表明,焦磷酸盐溶液体系电沉积白铜锡为不可逆电极过程,溶液中Cu2+与Sn2+也有互相促进电沉积的作用。添加剂IEP、DPTHE和JZ-1都会影响溶液中Cu2+和Sn2+离子还原的阴极极化和电沉积白铜锡的晶相结构。IEP和JZ-1都具有增强Sn2+还原的阴极极化和降低Cu2+还原的阴极极化的双重作用。无添加剂和添加IEP或DPTHE的镀液中电沉积所得白铜锡的晶相结构都为Cu6Sn5,添加JZ-1的镀液中电沉积所得白铜锡的主要晶相结构则为Cu41Sn11。  相似文献   

3.
采用硫酸盐镀液在铜基体上电沉积Sn-Bi镀层,利用能谱仪(EDS)、扫描电子显微镜(SEM)和X射线衍射仪(XRD)研究了电沉积参数对镀层成分和微观结构的影响.结果表明:镀层中Sn的质量分数随着镀液中Sn的质量浓度的增大而增大,同时随着电流密度的增大,Sn的质量分数不断减少;Sn-Bi镀层主要由四方晶系的Sn和菱形晶系的Bi组成;另外,研究发现电流密度对镀层形貌影响较大.  相似文献   

4.
采用焦磷酸盐体系电沉积制备了Sn-Ni合金。分别研究了电流密度、阳极类型、甘氨酸和氯化亚锡的质量浓度对镀层质量及镀层中锡的质量分数的影响,确定了较优的镀液组成及工艺条件。测试结果表明:当氯化亚锡的质量浓度为30g/L时,合金颗粒细致均匀;电沉积得到的Sn-Ni合金薄膜主要由Sn和Ni3Sn2组成。  相似文献   

5.
采用循环伏安法研究了在由0.1 mol/L SnCl2·2H2O和0.20 mol/L Na3C6H5O7·2H2O组成的弱酸性基础镀液中加入脂肪醇聚氧乙烯聚氧丙烯醚类添加剂JFC-SF对锡电沉积行为的影响,并通过扫描电镜分析和X射线衍射考察了添加剂JFC-SF的体积分数和电流密度对电镀锡电流效率及Sn镀层形貌和物相结构的影响。结果表明,添加JFC-SF能够增强锡电沉积的阴极极化,JFC-SF的体积分数为4 mL/L时可在电流密度0.6~1.2 A/dm2范围内电沉积得到平整、均匀、致密的Sn镀层。  相似文献   

6.
[目的]研究氯化胆碱与乙二醇物质的量比为1∶3的低共熔溶剂(用ChCl-3EG表示)中Sn(Ⅱ)电沉积的电化学行为及所得Sn镀层的耐蚀性,并将测试结果与氯化胆碱与乙二醇物质的量比为1∶2的体系(用Ch Cl-2EG表示)进行对比。[方法]先通过循环伏安法研究了Sn(Ⅱ)在ChCl-3EG体系中的电化学还原过程,研究了温度和主盐浓度对其电化学行为的影响。采用计时电流法研究了该体系中锡的形核生长机理,通过塔菲尔极化曲线测试研究了所得Sn镀层的耐蚀性,使用扫描电镜分析了Sn镀层的微观形貌。[结果]Sn(Ⅱ)在ChCl-3EG体系中的电化学还原是受扩散控制的不可逆过程。Sn(Ⅱ)在60°C的ChCl-3EG体系中的扩散系数为1.22×10-6 cm2/s,与在ChCl-2EG体系中的扩散系数接近,但前者的扩散活化能明显更低。Sn(Ⅱ)的电结晶过程为三维瞬时形核,适当增大阴极电流密度有利于提高Sn镀层的耐蚀性。[结论]Sn(Ⅱ)在物质的量比为1∶3的氯化胆碱-乙二醇体系中更容易还原,能耗更低,得到的Sn镀层具有优异的耐蚀性,可作为电沉积或电解精炼锡的电...  相似文献   

7.
采用恒电位共沉积方法从有机溶剂中制备不同Sn含量的Si-Sn合金负极,在100 mA/cm2的电流下进行100次充放电循环后,仍具有0.151 mAh/cm2的高面积比容量,比Si负极提升了73%。X射线衍射结果表明Si-Sn合金中Sn为β-Sn,Sn颗粒的嵌入不仅使Si-Sn合金负极比电沉积Si负极具有更好的导电性,提升了单位面积Si、Sn的沉积量;而且缓解了非晶Si的体积效应,从而提高了循环性能。不同Sn含量的容量曲线表明5%Sn含量的Si-Sn合金比容量最高,在500次循环后仍能保持859 mAh/g。  相似文献   

8.
苏梦洋  王利民  李俊  徐杰  陈飚  车飞 《电镀与涂饰》2021,40(17):1322-1327
通过线性扫描伏安法、循环伏安法和计时电流法研究了腰果酚聚氧乙烯醚(BGF)对甲磺酸体系中锡电沉积的影响,并分析了BGF对电镀锡层表面形貌和相结构的影响.结果表明,BGF能够抑制Sn2+的还原反应和传质扩散,改变锡晶粒成核过程,起到细化晶粒的作用,最终得到细致、平整的锡镀层.  相似文献   

9.
采用极化曲线法和循环伏安法研究了K4P2O7·3H2O+Sn2P2O7溶液体系中Sn(II)的阴极还原反应机理和动力学规律。结果表明,焦磷酸盐溶液体系电沉积Sn的表观活化能为13~14 k J/mol,即电极过程遵循扩散控制的动力学规律。Sn2+在焦磷酸盐溶液中的主要存在形式是[Sn(P2O7)2]6-,但在阴极直接放电还原的是[Sn(P2O7)]2-,电沉积锡的可能机理为:[Sn(P2O7)2]6-[Sn(P2O7)]2-+42 7P O-;[Sn(P2O7)]2-+2e-→Sn+42 7P O-。  相似文献   

10.
采用电沉积法制备了不同锡含量的Ni-Sn合金.通过扫描电镜、X-射线衍射分析了镀层的形貌和结构.采用阳极极化曲线、交流阻抗测试、浸泡实验研究了Ni-Sn合金在人工海水中的腐蚀行为.结果表明:所制得的Ni-Sn合金镀层为Ni相晶态结构,Ni-7.72wt%Sn合金镀层在人工海水中的腐蚀电位最正,电化学反应电阻最大,耐蚀性最佳.浸泡实验结果表明,Ni-7.72wt%Sn合金在人工海水中耐蚀性与SUS304相近,优于Ni-P合金.  相似文献   

11.
The initial stages of Sn and Sn-Cu electrodeposition from Sn-citrate and Sn-Cu-citrate solutions on Pt were studied using both current-controlled and potential-controlled electrochemical techniques. For both Sn-citrate and Sn-Cu-citrate solutions, when the current density is controlled to lower than 15 mA/cm2, potentials remain almost constant which is appropriate to plate dense and uniform films. When the current density is controlled to between 25 and 35 mA/cm2, potentials drop quickly initially, followed by a gradual increase to a constant value. When current density is controlled to higher than 50 mA/cm2, potential oscillation happens, and significant hydrogen evolution prevents the formation of dense and continuous Sn and Sn-Cu films. A constant transition time constant indicates a diffusion-controlled process. The diffusion coefficient calculated from the Sand equation is about 3.8 × 10−6 cm2/s for the Sn-citrate solution and 4.1 × 10−6 cm2/s for the Sn-Cu-citrate solution. The morphology of both Sn and Sn-Cu deposits plated under different potentials was examined by atomic force microscopy (AFM) and the distribution of each element were analyzed using Auger imaging. Analysis of both the electrochemical results at −0.72, −1.1 and −1.5 V and AFM images for both Sn and Sn-Cu deposits at −1.1 and −1.5 V suggested progressive nucleation controlled by diffusion for both Sn and Sn-Cu electrodeposition. Tin reacted with Pt to form PtSn4, and co-deposited with Cu to form Cu6Sn5 during nucleation, with more Sn forming at higher applied potentials.  相似文献   

12.
Electrodeposition and heat-treatment was attempted to directly obtain a Sn-Cu alloy anode with fine grain of crystals for lithium ion batteries. The preparation of Sn-Cu alloy anode started with pulsed electrochemically depositing tin on the substrate of copper foil collector, and a protection coating layer of copper was plated on the surface of deposited Sn. An alloy of tin and copper was formed when heated. The energy dispersive spectroscope (EDS) and X-ray diffraction (XRD) analysis showed the copper and tin were partially alloyed to form Cu6Sn5 and Cu3Sn after annealing. The SEM analysis showed the uncoated electrode is cracked after a cycle and the copper coated electrode was not cracked after 50 cycles. The Cu-coated electrode presented the first cycle coulomb efficiency reaching 95% and good cycleability.  相似文献   

13.
Macroporous material of Sn-Cu alloy of different pore sizes designated as anode in lithium-ion batteries were fabricated through colloidal crystal template method. The structure and electrochemical properties of the macroporous Sn-Cu alloy electrodes were examined by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and galvanostatic cycling. The results demonstrated that the electrodes of macroporous Sn-Cu alloy with pore size respectively of 180 and 500 nm can deliver reversible capacity of 350 and 270 mAh g−1 up to 70th cycles of charge/discharge. The cycle performance of the macroporous Sn-Cu alloy of 180 nm in pore size is better than that of the macroporous Sn-Cu alloy with 500-nm-diameter pores. It has revealed that the porous structure of the macroporous Sn-Cu alloy material is of importance to strengthen mechanically the electrode and to reduce significantly the effect of volume expansion during cycling.  相似文献   

14.
Zinc tin oxide (ZTO) thin films can be deposited by atomic layer deposition (ALD) with adjustable electrical, optical and structural properties. However, the ternary ALD processes usually suffer from low growth rate and difficulty in controlling film thickness and elemental composition, due to the interaction of ZnO and SnO2 processes. In this work, ZTO thin films with different Sn levels are prepared by ALD super cycles using diethylzinc, tetrakis(dimethylamido)tin, and water. It is observed that both the film growth rate and atom composition show nonlinear variation versus [Sn]/([Sn]+[Zn]) cycle ratio. The experimental thickness measured by spectroscopic ellipsometry and X-ray reflectivity are much lower than the expected thickness linearly interpolated from pure ZnO and SnOx films. The [Sn]/([Sn]+[Zn]) atom ratios estimated by X-ray photoelectron spectroscopy have higher values than that expected from the cycle ratios. Hence, to characterize the film growth behavior versus cycle ratio, a numerical method is proposed by simulating the effect of reduced density and reactivity of surface hydroxyls and surface etching reactions. The structure, electrical and optical properties of ZTO with different Sn levels are also examined by X-ray diffraction, atomic force microscope, Hall measurements and ultraviolet–visible–infrared transmittance spectroscopy. The ZTO turns out to be transparent nanocrystalline or amorphous films with smooth surface. With more Sn contents, the film resistivity gets higher (>1 Ω cm) and the optical bandgap rises from 3.47 to 3.83 eV.  相似文献   

15.
R.Z. Hu 《Electrochimica acta》2008,53(8):3377-3385
Thin film Sn-Cu anodes with high Cu content were prepared by electron-beam evaporation deposition using Cu substrate as current collector. Annealing, with the condition being determined by DSC, was used to improve the performance of these electrodes. X-ray diffraction (XRD), scanning probe microscopy (SPM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were used to characterize the structure and composition of the Sn-Cu thin film electrodes. Cyclic voltammetry and galvanostatical charge-discharge measurement were carried out to characterize the electrochemical properties of the as-deposited and annealed electrodes. ?-Cu3Sn intermetallic phase was formed and interface strength between deposited active materials layer and current collector was enhanced by annealing the as-deposited film under suitable condition. The annealed thin film electrode showed good cycleability and had no phase change during cycling. Although large initial capacity loss was found associated with SEI formation due to increase of surface roughness of annealed electrode, a stable discharge capacity near 300 mAh/g with Coulomb efficiency of about 96% was obtained at voltage window of 0.1-2.0 V and a discharge capacity of about 200 mAh/g and Coulomb efficiency of 97% were kept stable up to 30th cycle at a narrower voltage window of 0.2-1.5 V versus Li/Li+.  相似文献   

16.
The effect of heating temperatures on the electrical properties of sol–gel-derived (Zr,Sn)TiO4 thin films deposited on a p-type (1 0 0) Si substrate was studied. The leakage currents of films with two different heating temperatures chosen to burn-out the solvent as a function of applied voltage were measured at different temperatures. The activation energies obtained from the Arrhenius plot of the leakage current density versus measured temperature for (Zr,Sn)TiO4 films were then extracted. Additionally, microstructures of films with two different heating temperatures chosen to burn-out the solvent were analyzed by a conductive atomic force microscope (AFM) and an X-ray diffraction (XRD). Finally, the conductive mechanisms of leakage current and leakage current correlated to microstructures were also discussed.  相似文献   

17.
Cu2ZnSnSe4 (CZTSe) thin films are prepared by the electrodeposition of stack copper/tin/zinc (Cu/Sn/Zn) precursors, followed by selenization with a tin source at a substrate temperature of 530°C. Three selenization processes were performed herein to study the effects of the source of tin on the quality of CZTSe thin films that are formed at low Se pressure. Much elemental Sn is lost from CZTSe thin films during selenization without a source of tin. The loss of Sn from CZTSe thin films in selenization was suppressed herein using a tin source at 400°C (A2) or 530°C (A3). A copper-poor and zinc-rich CZTSe absorber layer with Cu/Sn, Zn/Sn, Cu/(Zn + Sn), and Zn/(Cu + Zn + Sn) with metallic element ratios of 1.86, 1.24, 0.83, and 0.3, respectively, was obtained in a selenization with a tin source at 530°C. The crystallized CZTSe thin film exhibited an increasingly (112)-preferred orientation at higher tin selenide (SnSe x ) partial pressure. The lack of any obvious Mo-Se phase-related diffraction peaks in the X-ray diffraction (XRD) diffraction patterns may have arisen from the low Se pressure in the selenization processes. The scanning electron microscope (SEM) images reveal a compact surface morphology and a moderate grain size. CZTSe solar cells with an efficiency of 4.81% were produced by the low-cost fabrication process that is elucidated herein.  相似文献   

18.
Thin films of dicadmium stannate spinel (Cd2SnO4) were deposited on glass substrates using a dip-coating technique. The films were transparent to visible light (90%) and electrically conductive. X-ray diffractometry showed that annealed films consisted of a single cubic spinel phase only when they were prepared from a solution with the composition of Cd:Sn = 2.5 and fired at a temperature of 400°–500°C. The Cd:Sn ratio, the firing temperature, and the post-deposition annealing sequence were crucial for the formation of a single phase, which is vital to obtain optimal optical and electrical properties. A resistivity as low as 3.3 × 10−4Ω·cm could be obtained after annealing.  相似文献   

19.
本文以InCl3.4H2O和SnCl4.5H2O为前驱物,利用溶胶-凝胶法在玻璃载片上旋转涂膜制备掺锡氧化铟透明导电薄膜(ITO薄膜)。采用了紫外-可见光分光光度计、四探针测试仪、X-射线衍射仪和扫描电镜等对ITO薄膜的透射率、方块电阻、物相组分和结构形貌进行测量与表征。研究了掺锡浓度对ITO薄膜的光电特性的影响。实验结果显示:ITO薄膜的光电特性与掺锡浓度有关,在掺杂溶度为12wt%时,制备出的ITO薄膜最低方块电阻为124Ω/□,最高透射率为92.85%。  相似文献   

20.
采用水热法成功制备了Cu2ZnSnS4(CZTS)半导体材料,通过浸涂法制备了相应的薄膜,并在N2气氛中于400℃对薄膜进行了退火处理.用X射线荧光光谱分析了所得CZTS粉末中各组成元素的含量,并分别用X射线衍射、扫描电子显微镜和紫外-可见-近红外光谱对CZTS薄膜样品的晶体结构、表面形貌和带隙进行了表征.结果表明:所...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号