首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The purpose of this investigation was to determine whether the increase in the dopamine (DA) concentration in the rat striatum after a rapid iv injection of beta-phenylethylamine (PEA) can be quantitatively explained by the alteration of the striatum PEA concentration using a constructed DA metabolism model and to examine whether the time courses of the striatum DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) concentration can be described by this DA metabolism model. The time courses of PEA concentration in plasma and the striatum were determined by gas chromatography-mass spectrometry. The plasma PEA concentration was described by a two-compartment model with nonlinear elimination kinetics. The striatum PEA concentration was about 10 times higher than the plasma PEA concentration. The time course of the striatum PEA concentration was described by a diffusion-limited model including a Michaelis-Menten type transport system from plasma to the striatum and nonlinear elimination from the striatum. The DA concentration in the striatum increased immediately after PEA injection. In contrast, the DOPAC concentration in the striatum decreased immediately. HVA concentration in the striatum increased gradually. Assuming that the enhancement of DA concentration in the striatum after PEA injection is caused by the competitive inhibition of PEA on the reuptake of DA into DA neuronal terminals (and the metabolism from DA to DOPAC is then competitively inhibited by PEA in the DA neuronal terminals), the relationship between the enhancement of DA concentration and PEA concentration in the striatum was analyzed using a constructed DA metabolism model. The enhancement of the DA concentration in the striatum was described quantitatively by this model. Thus, it was clarified that a quantitative relationship between PEA concentration and the enhancement of DA concentration in the striatum is present after PEA injection. However, the time courses of the striatum DOPAC (lower dose) and HVA (time delay) concentrations could not be described by this model. These results indicated that other factors might be necessary to explain the time courses of the DOPAC and HVA concentrations in the striatum after PEA injection, such as the separate evaluation of the effect of PEA on the reuptake of DA into DA neuronal terminals and on the monoamine oxidase-B (MAO-B) activity in the DA neuronal terminals, and the metabolic pathway from DOPAC to HVA.  相似文献   

2.
Apomorphine is a dopamine receptor agonist increasingly used in the treatment of Parkinson's disease (PD). In the present study, we examined the plasma and ventricular cerebrospinal fluid (CSF) pharmacokinetics of apomorphine as well as its effects on dopamine metabolism in six patients (one woman and five men, mean age 79.5 years) without evidence of PD who underwent 48-h intracranial pressure monitoring for suspected normal pressure hydrocephalus. Maximal plasma apomorphine concentration (25.04 ng/ml) is found 20 min after subcutaneous injection (50 micrograms/kg), and the mean area under the curve is 1,439.37 ng/ml for 120 min. In contrast to plasma values, the maximal ventricular CSF apomorphine concentration (1.08 ng/ml) is found 30 min after injection and the mean area under that curve is 7% of that of plasma (96.69 ng/ml for 120 min). Apomorphine administration causes a significant reduction in ventricular CSF concentrations of dopamine and of its major metabolites sulfoconjugated dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA). This effect starts 10 min after the injection of apomorphine, is maximal after 30 min (free dopamine, -30%; sulfoconjugated dopamine, -28%; HVA, -21%; DOPAC, -31%) and is still present, although to a lesser extent (-5 to -10%), 120 min after the injection of apomorphine. This study shows that in humans a dose of apomorphine commonly used in PD causes significant inhibition of dopamine metabolism lasting > 120 min. In addition to their symptomatic effects, dopamine agonists such as apomorphine may play a role in preventing or slowing the neurodegeneration in PD by autoreceptor-mediated inhibition of dopamine metabolism.  相似文献   

3.
Recent ex vivo findings have shown that morphine increases dopamine (DA) and xanthine oxidative metabolism and ascorbic acid (AA) oxidation in the rat striatum. In the present study, we evaluated the effects of subcutaneous daily morphine (20 mg/kg) administration on DA, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), AA and uric acid in the striatum of freely moving rats using microdialysis. Dialysates were assayed by high performance liquid chromatography with electrochemical detection. On the first day, morphine administration caused a significant increase in extracellular DA, DOPAC, HVA, AA and uric acid concentrations over a 3 h period after morphine. In all treated rats (n = 7), individual concentrations of DOPAC + HVA were directly correlated with individual AA and uric acid concentrations. Last morphine administration on the 4th day increased DOPAC, HVA, AA and uric acid concentrations but failed to increase those of DA. Individual DOPAC + HVA concentrations were still directly correlated with individual AA and uric acid concentrations. These results suggest that systemic morphine increases both striatal DA release and DA and xanthine oxidative metabolism. Only the former effect undergoes tolerance. The increase in DA oxidative metabolism is highly correlated with that of xanthine. The subsequent enhancement in reactive oxygen species production may account for the increase in extracellular AA.  相似文献   

4.
We report a patient with a parkinsonian syndrome induced by sertraline (Zoloft), an SSRI antidepressant, whose symptoms resolved after the drug was discontinued. This case prompted us to investigate the effect of sertraline on dopamine metabolism in animals. Sertraline (30 mg/kg, i.p.) or placebo (vehicle) was administered to two groups of six normal, anesthetized rats and using cerebral microdyalisis extracellular striatal levels of dopamine, the dopamine metabolites (HVA and DOPAC), as well as the serotonin metabolite 5-HIIA were monitored. In animals pre-treated with sertraline, DOPAC, HVA, and 5-HIAA levels were significantly decreased compared to control animals (p < 0.01). These data indicate that sertraline has an effect on dopamine metabolism, which may alter function in the striatum and induce a parkinsonian syndrome.  相似文献   

5.
This study investigated the relationships between blood pressure, cortical oxygen pressure, and extracellular striatal dopamine in the brain of adult cats during hemorrhagic hypotension and retransfusion. Oxygen pressure in the blood of the cortex was measured by the oxygen dependent quenching of phosphorescence and extracellular dopamine, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) by in vivo microdialysis. Following a 2 h stabilization period after implantation of the microdialysis probe in the striatum, the mean arterial blood pressure (MAP) was decreased in a stepwise manner from 132 +/- 2 Torr (control) to 90 Torr, 70 Torr and 50 Torr, holding the pressure at each level for 15 min. The whole blood was then retransfused and measurements were continued for 90 min. As the MAP was lowered there was a decrease in arterial pH, from a control value of 7.37 +/- 0.05 to 7.26 +/- 0.06. The PaCO2 decreased during bleeding from 32.3 +/- 4.8 Torr to 19.6 +/- 3.6 Torr and returned to 30.9 +/- 3.9 Torr after retransfusion. The PaO2 was 125.9 +/- 15 Torr during control conditions and did not significantly change during bleeding. Cortical oxygen pressure decreased with decrease in MAP, from 50 +/- 2 Torr (control) to 42 +/- 1 Torr, 31 +/- 2 Torr and 22 +/- 2 Torr, respectively. A statistically significant increase in striatal extracellular dopamine, to 2,580 +/- 714% of control was observed when MAP decreased to below 70 Torr and cortical oxygen pressure decreased to below 31 Torr. When the MAP reached 50 Torr, the concentration of extracellular dopamine increased to 18,359 +/- 2,764% of the control value. A statistically significant decrease in DOPAC and HVA were observed during the last step of bleeding. The data show that decreases in systemic blood pressure result in decrease in oxygen pressure in the microvasculature of the cortex, suggesting vascular dilation is not sufficient to result in a full compensation for the decreased MAP. The decrease in cortical oxygen pressure to below 32 Torr is accompanied by a marked increase in extracellular dopamine in the striatum, indicating that even such mild hypoxia can induce significant disturbance in brain metabolism.  相似文献   

6.
In the present study we infused taurine (50, 150 or 450 mM, 2 microliters/min for 4h) into the dorsal striatum or into the substantia nigra via microdialysis probe and estimated the extracellular concentrations of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the dorsal striatum of anaesthetised rats. Intrastriatal infusion of taurine elevated striatal dopamine at all concentrations studied. At the 450 mM concentration taurine elevated the extracellular dopamine 10-fold, but only in the first 30 min sample after starting the taurine infusion. At 50 and 150 mM taurine elevated dopamine throughout the 4h infusion maximally up to 3-4-fold the control level. Extracellular DOPAC was increased by 150 and 450 mM taurine (up to about 150-160% of the control level), whereas at all three concentrations taurine decreased HVA to about 85% of the control; however, the decrease caused by 450 mM taurine was short-lasting. At all three concentrations taurine infused into the substantia nigra decreased the extracellular dopamine in the ipsilateral striatum to about 40-50% of the control, and increased extracellular DOPAC and HVA maximally to about 150% and 170% of the control, respectively. These results show that the effects of taurine on the concentrations of extracellular dopamine and its metabolites depend on its administration site on nigrostriatal dopaminergic neurons. It elevates the extracellular dopamine when given into the striatum, but when given into the cell body region of the nigrostriatal dopaminergic pathway it decreases the extracellular dopamine in the ipsilateral striatum.  相似文献   

7.
1. The effect of electroconvulsive shock (ECS) on extracellular concentration of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) was examined with the use of in vivo microdialysis in rat striatum. 2. Extracellular concentration of DA was markedly increased up to 183% after single ECS, and that of DOPAC, HVA and 5-HIAA was also significantly increased. The increase after the eighth ECS was attenuated compared to their increase soon after the first ECS. After repeated ECS, baseline concentration of DOPAC, HVA and 5-HIAA was significantly increased, and baseline DA concentration tended to increase. 3. These results suggested that single and repeated ECS activated metabolism of DA and 5-hydroxytryptamine in rat striatum. Activated metabolism of DA may be responsible for the clinical effect of electroconvulsive therapy for parkinsonism.  相似文献   

8.
The concentrations of dopamine (DA), dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were measured in the striatum of rats after i.p. injection of dipropyl-2-aminotetralin and the four positional isomers of monohydroxy-dipropyl-2-aminotetralin. All compounds except 8-OH dipropylaminotetralin caused a decrease in DOPAC- and HVA-concentrations. In addition, 5-OH-dipropylaminotetralin produced a small elevation in DA concentrations. In contrast, 7-OH dipropylaminotetralin, in doses of 100 mumol/kg and more, decreased DA to 50% and initially increased HVA and DOPAC to about 200%, after which the concentrations of the metabolites fell to 30% or less. The 5-OH isomer was found to be the most potent compound, decreasing HVA concentrations to 70% at a dose of 0.14 mumol/kg. The potencies are compared to those of catechol-group containing DA-agonists such as apomorphine and N,N-dipropyl-5,6-dihydroxy-2-aminotetralin. In addition, a comparison is made with reported behavioural data. It is suggested that the more active N-alkylated 2-aminotetralins have a conformation which corresponds to that of the alpha rotamer of dopamine.  相似文献   

9.
The extracellular concentrations of dopamine (DA) and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the striatum and the nucleus accumbens were measured in awake, freely-moving rats. Clozapine (20 mg/kg, i.p.) increased extracellular DA and HVA in both regions but increased DOPAC only in the striatum. Scopolamine (1 mg/kg), although it had no effect by itself in the striatum or nucleus accumbens, inhibited the ability of clozapine to increase extracellular DA, DOPAC and HVA concentrations in the striatum. The clozapine-induced increase in DA in the frontal cortex was not blocked by scopolamine. Haloperidol (1 mg/kg, i.p.) and thioridazine (10 mg/kg, i.p.) also increased extracellular DA, DOPAC and HVA in the striatum, but scopolamine pretreatment did not inhibit these increases. The results suggest that clozapine differs from haloperidol and thioridazine in that the effect of clozapine, but not that of the two neuroleptic drugs, to increase DA release in the striatum acutely depends on muscarinic receptor stimulation. These results suggest that clozapine, despite its strong muscarinic antagonist properties, does not produce full blockade of muscarinic receptors in vivo in the striatum. The interaction of clozapine with the cholinergic system in the striatum could be relevant to its lack of ability to produce extrapyramidal symptoms or tardive dyskinesia.  相似文献   

10.
1. We have investigated the effects of a schizophrenomimetic drug phencyclidine (PCP) and N-methyl-D-aspartate (NMDA)-related agents alone or in combination on dopamine metabolism in the medial prefrontal cortex and striatum of the rats by measuring the tissue concentrations of dopamine and its metabolite, 3,4-dihyroxyphenylacetic acid (DOPAC), and the rate of dopamine disappearance (dopamine utilization) after its synthesis inhibition. 2. Systemic injection of PCP and selective, non-competitive, NMDA antagonists caused an increase of both tissue concentrations of DOPAC and dopamine utilization in the prefrontal cortex but not in the striatum. The PCP-induced augmentation of cortical dopamine metabolism was not influenced by selective lesion of ascending noradrenergic neurones. 3. Intra-prefrontal cortical infusion of PCP or selective competitive or non-competitive antagonists of the NMDA receptor mimicked the ability of systemic PCP injection to enhance DOPAC levels and dopamine utilization in the prefrontal cortex. However, an NMDA antagonist injected into the cell body area of the mesocortical dopaminergic neurones failed to affect dopamine metabolism in the prefrontal cortex. 4. The increasing effects of PCP and selective NMDA antagonists on cortical dopamine utilization were not additive, although a dopamine receptor antagonist, haloperidol, still accelerated the disappearance of dopamine, even in the presence of PCP. 5. Intra-cortical or intra-ventricular infusion of NMDA or D-alanine but not L-alanine, attenuated the ability of systemic PCP administration to facilitate prefrontal dopamine utilization. 6. These data suggest that PCP might activate prefrontal cortical dopaminergic neurones, at least in part, by blocking the NMDA receptor in the prefrontal cortex which participates in a tonic inhibitory control of the mesoprefrontal dopaminergic projections.  相似文献   

11.
The present studies were designed to determine whether administration of recombinant human glial cell line-derived neurotrophic factor (rhGDNF) into either the substantia nigra or striatum is capable of augmenting dopamine function of the nigrostriatal pathway in normal rats. Single bolus intracranial injections of rhGDNF at either site increased locomotor activity and decreased food and water consumption and body weight in a dose-dependent manner when compared to vehicle-treated animals. These behavioral responses returned to pre-control levels within 3 weeks post rhGDNF administration. Administration of rhGDNF intranigrally increased dopamine, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels of the ipsilateral substantia nigra at 2 and 6 weeks post injection but had no augmenting effects on dopamine or its metabolites in the striatum. Administration of rhGDNF intrastriatally increased DOPAC and HVA levels of the ipsilateral striatum, although striatal dopamine levels were unchanged. Ipsilateral nigral dopamine levels were increased after intrastriatal injection of rhGDNF. The effects of intracranial rhGDNF were not specific to the nigrostriatal dopamine system, since nigrostriatal serotonin, 5-hydroxyindoleacetic acid (5-HIAA), epinephrine and norepinephrine transmitter levels were altered depending on administration route for rhGDNF and dose. Taken together, these data demonstrate long-lasting neurochemical and behavioral changes which suggest that rhGDNF can augment function in adult rat dopamine neurons. Therefore, rhGDNF may have therapeutic potential for Parkinson's disease.  相似文献   

12.
The effect of 17 beta-estradiol (E2) on the response of dopamine (DA) and serotonin (5-HT) to acute lithium in the brains of ovariectomized rats was investigated. An E2 injection (100 ng/s.c.) to ovariectomized rats did not change striatal DA levels, whereas the levels of its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), increased 30 min later; concentrations of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), also remained unchanged. In the frontal cortex, DA, 5-HT, HVA and 5-HIAA levels remained unchanged after the E2 injection, whereas DOPAC levels and DOPAC/DA and HVA/DA ratios increased 30 min later. Injection of LiCl (10 mEq) decreased striatal DA levels, increased DOPAC levels and slightly decreased HVA levels; by contrast, frontal cortex DA and HVA levels increased but DOPAC levels were unchanged. A biphasic response of striatal 5-HT levels occurred, increasing shortly after injection of LiCl, followed by a decrease; 5-HIAA levels, however, increased. In the frontal cortex, injection of rats with LiCl led to a gradual increase in 5-HT levels, whereas 5-HIAA concentrations decreased. In the presence of E2, LiCl effected a greater decrease in striatal DA than injection of LiCl alone, advanced the DOPAC peak by 30 min and increased HVA levels; E2 had less effect on the 5-HT response to LiCl, except the decreases in 5-HT and 5-HIAA at 60 min were greater. Furthermore, in the striatum, the increased DA turnover caused by LiCl, estimated by the DOPAC/DA and HVA/DA ratios, was advanced in rats treated with E2. In the presence of E2, LiCl slightly increased frontal cortex DA, DOPAC and HVA levels compared with treatment with LiCl alone, whereas DOPAC levels decreased in rats treated with LiCl + E2 compared with levels in E2-treated rats. Generally, higher levels of 5-HT and 5-HIAA were measured in the frontal cortices of rats treated with LiCl + Ex compared with rats injected with LiCl. These results indicate that E2 potentiates the acute effect of lithium on striatal and frontal cortex DA and 5-HT levels and metabolism, suggesting a role of the hormonal state on this drug response.  相似文献   

13.
We examined the effect of L-dihydroxyphenylalanine (L-DOPA) infusion in vitro upon dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) output from superfused corpus striatum of vehicle and reserpine or tetrabenazine (TBZ) treated male rats. Specifically, we tested the effects of two 20-min infusions of L-DOPA (5 uM) upon DA and DOPAC output (pg/mg/min) in reserpine (5 mg/kg, i.p., 24 hours before sacrifice; n=11), TBZ (30 mg/kg, i.p. 1 hour before sacrifice; n=8) or vehicle (n=21) treated rats. There was an overall significantly higher L-DOPA evoked DA output from the vehicle (12.22+/-1.74) versus reserpine (4.39+/-2.40) (p < 0.05), but not TBZ (9.16+/-2.81) treated rats. In addition, the DA response to the second L-DOPA infusion was significantly increased over that of the first response in the vehicle (9.40+/-2.11 vs. 15.04+/-2.78) (p < 0.05), but not reserpine or TBZ treated rats. The overall DOPAC outputs did not achieve a statistically significant difference among all treatment groups. However, the DOPAC outputs following the second L-DOPA infusion were significantly reduced in reserpine (41.15+/-6.10 vs. 20.27+/-4.54) and TBZ (21.38+/-4.41 vs. 10.87+/-2.36) (both p < 0.05), but not vehicle (28.99+/-4.00 vs. 24.91+/-4.78) treated rats. We conclude that: 1) the storage capacity of DA neurons is one of the important elements involved in affecting L-DOPA's effects upon DA and DOPAC output, 2) the shunting of storage to metabolism may represent a common characteristic in impaired nigrostriatal dopaminergic system, and 3) TBZ may operate differently from reserpine in the nigrostriatal dopaminergic system.  相似文献   

14.
The effect of morphine, administered intrapallidally, on extracellular concentrations of DA, DOPAC, and HVA in the nucleus accumbens and striatum was studied in the behaving rat using the in vivo microdialysis technique. Unilateral application of morphine hydrochloride was performed through microdialysis probes into the rat ventral pallidum (10 microliters of 0, 2.6, 4.0, 13.0, and 26.0 mM) or globus pallidus (10 microliters of 0 and 26.0 mM). The levels of DA, DOPAC, and HVA were measured using the HPLC with EC detection in dialysates collected from the nucleus accumbens, anteromedial, and anterolateral striatum. Samples were taken every 45 min over 3 h before and over 5 h after morphine or vehicle administration. Administration of morphine into the ventral pallidum resulted in increased DOPAC and HVA concentrations in the nucleus accumbens. Pretreatment with naloxone (1 mg/kg, SC) abolished this effect of morphine. Administration of morphine into the globus pallidus resulted in increased DA, DOPAC, and HVA concentrations in the nucleus accumbens and DA in the anteromedial striatum. The levels of DA and metabolites in anterolateral striatum remained rather unchanged following morphine administered into the ventral pallidum or the globus pallidus. The changes in DA neurotransmission into the nucleus accumbens induced by morphine application into the ventral pallidum and globus pallidus are reminiscent of a phasic and tonic release of DA respectively. The results show that intrapallidal morphine increases DA neurotransmission in nucleus accumbens and suggest that the effect of morphine is mediated by ventral pallidum/mesolimbic and globus pallidus/thalamocortical pathways, depending on the site of injection.  相似文献   

15.
In vivo microdialysis was used to examine changes in nucleus accumbens and striatal dopamine, dihydrophenylacetic acid (DOPAC), and homovanillic acid (HVA) following acute administration of ethanol (0.0, 0.25, 0.5, 1.0, or 2.0 g/kg) in male and female Long-Evans rats. Following dialysis, rats were trained to bar-press for oral ethanol reinforcement. In nucleus accumbens, females showed significant increases in extracellular dopamine following 0.25 or 0.5 g/kg ethanol, but did not show significant increases over baseline at the higher doses. Males showed slight increases in dopamine at the lower doses and decreased dopamine at 2.0 g/kg. In striatum, both sexes showed increased dopamine at the lower doses and decreased dopamine at 2.0 g/kg. There were slight increases in nucleus accumbens DOPAC and HVA at some doses in both sexes, but no changes in striatal metabolite levels. In addition to showing increased responsiveness to ethanol-induced mesolimbic dopamine stimulation, females consumed more ethanol than males during behavioral testing. The pattern of both greater ethanol-induced nucleus accumbens dopamine release and greater ethanol consumption in females supports the hypothesis that ethanol reward is mediated, at least in part, by the mesolimbic dopamine system.  相似文献   

16.
In vivo microdialysis in conscious rats combined with HPLC-EC analysis was used to monitor extracellular levels of 3, 4-dihydroxyphenilacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in the dorsal striatum (STR) during infusions of procain and apomorphine into the nucleus accumbens (N.acc). It was shown that apomorphine infused into the N.acc (2 x 10(-5) M) caused a decrease in striatal extracellular levels of DOPAC, HVA, and 5-HIAA. Infusions of procain into the N.acc (10(-5) M) produced an increase in extracellular DOPAC, and HVA in the STR. Data indicated that the N.acc exerts an inhibitory influence on the metabolism of dopamine in the STR, the influence being under control of dopaminergic system of the N.acc.  相似文献   

17.
The effect of chronic inhibition of the angiotensin-converting enzyme on dopamine content and release in the striatum was investigated using in vivo microdialysis in awake, freely moving rats. Rats were treated for 1 week with the angiotensin-converting enzyme inhibitor perindopril (1 mg/kg) via the drinking water, whereas the controls were given water alone. One week after perindopril treatment, striatal dopamine dialysate levels in the treated group were markedly elevated compared with control values: control, 233 +/- 43 pg/ml; perindopril, 635 +/- 53 pg/ml (p < 0.001). These results were confirmed by a complementary study in which dopamine content was measured in striatal extracts (3.5 +/- 0.4 micrograms of dopamine/g of tissue for controls compared with 9.2 +/- 2.4 micrograms of dopamine/g of tissue for the treated group; p < 0.05). In the rats that were dialyzed, angiotensin-converting enzyme levels in the striatum were decreased by 50% after perindopril treatment. Levels of dopamine D1 and D2 receptors and of preprotachykinin and tyrosine hydroxylase mRNAs were unchanged after angiotensin-converting enzyme inhibition. A small, but significant, increase was detected in striatal preproenkephalin mRNA levels in the angiotensin-converting enzyme inhibitor-treated group. These results indicate that peripherally administered angiotensin-converting enzyme inhibitors penetrate the blood-brain barrier when given chronically and modulate extracellular dopamine and striatal neuropeptide levels.  相似文献   

18.
The contents of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) were determined in the nucleus accumbens (ACB), frontal cortex (FR), anterior striatum (AST), and hippocampus (HIP) of adult male rats from the F2 generation of P x NP intercrosses. Rats were tested for their alcohol preference and were divided into two groups, depending on their alcohol intake. Rats in the high drinking group (n = 11) had ethanol intakes > 5g/kg/day, whereas the low drinking group (n = 15) had values < 1 g/kg/day. The content of DA in the ACB was lower (p < 0.001) in the high alcohol drinking group (46 +/- 2 pmol/mg tissue) than in the low intake rats (61 +/- 3 pmol/mg tissue). However, the contents of DOPAC and HVA in the ACB were similar for both groups. There were no differences between the two groups in the contents of DA in the FR or AST. The content of 5-HT in the ACB was lower (p < 0.05) in high alcohol drinking rats (6.3 +/- 0.3 pmol/mg tissue) than in the low intake group (7.0 +/- 0.2 pmol/mg tissue). The content of 5-HIAA in the ACB of the high intake rats was also lower than the level for the low drinking rats. There were no differences in the contents of 5-HT or 5-HIAA in the FR, HIP, and AST between the two groups. The results confirm a phenotypic association between abnormal DA and 5-HT systems projecting to the ACB and high alcohol drinking behavior in the P line of rats.  相似文献   

19.
The effect of the muscarinic antagonist, scopolamine, was examined for a change in the increase in extracellular dopamine, dihydroxyphenyl acetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindolacetic acid (5-HIAA), induced by haloperidol or clozapine in the striatum and nucleus accumbens of anaesthetised and awake rats, monitored using in vivo cerebral microdialysis. Rats received scopolamine (1 mg kg(-1); s.c.) or vehicle followed by haloperidol (1 mg kg(-1); s.c.) or clozapine (20 mg kg(-1); s.c.). Dopamine, DOPAC, HVA and 5-HIAA overflow into striatal or accumbens perfusates was determined using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Scopolamine failed to modify the clozapine- or haloperidol-induced efflux of dopamine or its metabolites in either the striatum or nucleus accumbens following systemic administration in anaesthetised or awake rats. Although pretreatment with scopolamine tended to produce a smaller increase in the clozapine-induced efflux of DOPAC in striatal perfusates than following clozapine treatment alone, this was not statistically significant. Furthermore, local infusion of scopolamine (100 microM) with clozapine (1 mM) via the microdialysis probe did not attenuate the elevated efflux of dopamine observed following clozapine alone, in either the striatum or nucleus accumbens, in anaesthetised rats. This treatment did prevent the clozapine-induced increase in DOPAC and HVA in the striatum but not the nucleus accumbens. Carbachol (50 microM) infused into the dorsolateral striatum or nucleus accumbens raised extracellular dopamine levels 200% and 150%, respectively above baseline. Our data suggest that the increased efflux of dopamine and its metabolites in the rat basal ganglia following clozapine administration is not significantly dependent upon the interaction of clozapine with muscarinic receptors.  相似文献   

20.
Changes in extracellular levels of dopamine (DA), DA metabolites DOPAC and HVA, and the serotonin metabolite 5-HIAA, were measured by microdialysis in the rat nucleus accumbens (n. acc) after treatments with serotonin (5-HT)1A (8-OH-DPAT) or 5-HT1B (RU 24969 and S-CM-GTNH2) receptor agonists. Subcutaneous injections of RU 24969 (0.02-2 mg/kg) dose-dependently decreased 5-HIAA levels (0 to -38%), and also induced long-lasting increases in DA levels (0 to +37%) and DOPAC (+11% at the dose 0.5 mg/kg) in the shell of the n. acc, whereas 8-OH-DPAT (0.25 and 0.5 mg/kg) reduced 5-HIAA levels (-25%) and very slightly increased DOPAC at the lower dose (+4%), but had no effect on DA levels. Three weeks after interruption of the subicular efferent projections, the increase in DA levels previously observed after systemic injections of RU 24969 was abolished. Microinjections of RU 24969 (10 micrograms/microliter) or S-CM-GTNH2 (3 micrograms/microliter) into the ventral subicular area reproduced the effects of systemic injections of RU 24969 cn DA levels and increased DOPAC (+13%; +19%, respectively) and HVA levels (+23%; +24%), with no significant change in 5-HIAA. It is concluded that: (1) serotonin interacts with the mesolimbic dopaminergic system through 5-HT1B, but not 5-HT1A, receptors: and (2) serotonin interaction with the mesolimbic dopaminergic system involves postjunctional 5-HT1B heteroreceptors located in the ventral subicular area, which modulate the activity of glutamatergic hippocampo-accumbens pathways and only secondarily alter DA levels in the n. acc. The possible relevance of these results for schizophrenia is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号