首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cation exchange mechanism and rate of Cs+ exchange were investigated in < 2 μm and 20–2 μm particle size fractions of K-depleted phlogopite (Na-phlogopite). The K-depleted phlogopite was prepared from a natural phlogopite by a potassium removal method using sodium tetraphenylborate (NaTPB) at room temperature. X-ray diffraction (XRD) patterns revealed that interlayer K+ ions were completely replaced with sodium ions after the potassium removal treatment. Ion exchange isotherms and kinetics were determined for Na+ → Cs+ exchange with two particle size fractions. The isotherms indicated that both particle size fractions showed high selectivity for Cs+. Based on the isotherm tests, ΔGo values of < 2 μm and 20–2 μm particle fractions were − 6.83 kJ/mol and − 7.08 kJ/mol, respectively. Kinetics of Cs exchange revealed that the 20–2 μm particle size fraction of the K-depleted phlogopite took up more Cs+ ions than the < 2 μm particle size fraction. Various kinetic models were applied to describe Na+ → Cs+ exchange process. Elovich model described the kinetic data of the < 2 μm particle size fraction well, while the modified first-order model or parabolic diffusion model described the data of the 20–2 μm particle size fraction well.  相似文献   

2.
Mineralogical transformations during firing of two extremely calcareous clays, one calcite and other dolomite rich, and relatively poor in silica were studied. Original clays were mineralogical and chemically characterized with X-ray diffraction (XRD) and X-ray fluorescence (XRF). Firing of both clays was carried out in the temperature range 300–1100 °C under oxidizing conditions and the mineralogical transformations were investigated with XRD, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy associated with energy dispersive X-ray spectroscopy (SEM-EDS).Important compositional differences in the neoformed phases were observed between calcite and dolomite rich clays. In the Ca-rich clay the assemblage gehlenite + wollastonite + larnite was observed. In the Mg(Ca)-rich clay the reaction products included akermanite, diopside, monticellite, forsterite, periclase and spinel.XRD and SEM-EDS showed the presence, in both clays, of a potassium–calcium sulfate in samples fired between 900 and 1100 °C.  相似文献   

3.
Clays have been long taken internally due to their sorption effects and the mechanical shielding developed by sheet morphologies. The purpose of this paper is the modelling of the mentioned traditional application in terms of chemical and mineralogical budget towards the body.Four polymineralic clays potentially suitable for therapeutic use were analysed for their mineralogical and geochemical composition. Quartz is always present, as well as feldspars, whereas carbonates are more variable (from trace levels, to about 40%). The clay mineralogy is characterised by mixed layers illite–smectite, kaolinite and illite. Most chemical elements show little anomalies compared to average shale [Turekian, K.K., Wedephol, K.H., 1961. Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 72, 175–192], excluding Ca that is enriched according to the carbonate occurrence. Another geochemical feature is the depletion of more electronegative elements, among which very hazardous elements may be found.For the preparation of “argillic water”, the clays were dispersed in water and three suspensions were prepared to test the effect of settling time (5 min, 1 h, and 24 h). After the settling, the supernatant was centrifuged to analyse the solution and the particulate. The grinding of clays (a common practice for industrial uses) sensibly reduce the mineralogical selectivity of settling, nevertheless, quartz and feldspars are depleted during settling and phyllosilicates are enriched or fluctuate when the starting value is high; the carbonate content increases or decrease within a narrow interval. The grinding procedure minimises the different behaviour of clay minerals dispersed in water because the clay assemblage of suspended particulate does not show significant trends; only illite shows a slightly decrease.The solute composition is dominated by Na > Si > Ca > K > Mg. The comparison of the 4 clays indicates that the sample richest in mixed layers shows the highest content of many trace elements in solution. The variations of solution chemistry indicate that the less soluble elements decrease with the time of settling (e.g. Fe, Al, Mn): the elements hosted in organic matter or sulphides and soluble in oxidative media, increase with time (V, Mo, Sb, As). Many other elements are rather constant or at very low concentrations. The occurrence of sorptive minerals tends to hide these trends mainly during the first hour of settling.The chemical input to the body was calculated adding the amount of element in solution to the extractable amount from the digestion of particulates. The latter is based on the simulated digestion of clays taken from the literature. A critical point is the definition of a threshold that discriminates between useful and excessive ingestion of chemical elements. Since no reference models are available, the limit for drinking water was used. Considering that adults drink 2 l of water, the maximum daily dose for water was transformed into the amount of each chemical element considered by the law and compared with the amount available from the preparation of “argillic water”. Based on these results, the settling of clays can be tuned in order to emphasise the desired composition or to minimise side effects.  相似文献   

4.
Temperature-dependent emission current–voltage measurements were carried out for nitrogen (N)-doped nanocrystalline diamond (NCD) films grown on n-type Si substrates by microwave plasma-assisted chemical vapor deposition (MP-CVD). Low threshold temperature (~ 260 °C) and low threshold electric field (~ 5 × 10− 5 V/µm) were observed. Both the temperature dependence and the electric field dependence have shown that the obtained emission current was based on electron thermionic emission from N-doped NCD films. We have also studied the relation between nitrogen concentration and the saturation emission current. The saturation current obtained was as high as 1.4 mA at 5.6 × 10− 3 V/µm at 670 °C when the nitrogen concentration was 2.4 × 1020 cm− 3. Low value of effective work function (1.99 eV) and relatively high value of Richardson constant (~ 70) were estimated by well fitting to Richardson–Dushman equation. The results of smaller φ and larger A′ suggest that N-doped NCD has great possibility of being a highly efficient thermionic emitter material.  相似文献   

5.
The rate of Fischer–Tropsch synthesis over an industrial well-characterized Co–Ru/γ-Al2O3 catalyst was studied in a laboratory well mixed, continuous flow, slurry reactor under the conditions relevant to industrial operations as follows: temperature of 200–240 °C, pressure of 20–35 bar, H2/CO feed ratio of 1.0–2.5, gas hourly space velocity of 500–1500 N cm3 gcat− 1 h− 1 and conversions of 10–84% of carbon monoxide and 13–89% of hydrogen. The ranges of partial pressures of CO and H2 have been chosen as 5–15 and 10–25 bar respectively. Five kinetic models are considered: one empirical power law model and four variations of the Langmuir–Hinshelwood–Hougen–Watson representation. All models considered incorporate a strong inhibition due to CO adsorption. The data of this study are fitted fairly well by a simple LHHW form − RH2 + CO = apH20.988pCO0.508 / (1 + bpCO0.508)2 in comparison to fits of the same data by several other representative LHHW rate forms proposed in other works. The apparent activation energy was 94–103 kJ/mol. Kinetic parameters are determined using the genetic algorithm approach (GA), followed by the Levenberg–Marquardt (LM) method to make refined optimization, and are validated by means of statistical analysis. Also, the performance of the catalyst for Fischer–Tropsch synthesis and the hydrocarbon product distributions were investigated under different reaction conditions.  相似文献   

6.
Chemical and mineralogical composition and geotechnical properties of Ca2+-bentonite samples from Lieskovec deposit, Slovakia, are reported. The main mineral is Fe-montmorillonite. Its content as obtained by the methylene blue adsorption method is relatively low, 28 to 49%; however, it is the dominant variable affecting geotechnical parameters of this bentonite. Rather low liquid limit values of 64–80% and water adsorption (Enslin test) data in a broad range of 123–606% were obtained. Permeability coefficients of the order of 10− 11 m s− 1 suggest the possible suitability of this bentonite for geosynthetic clay liners and other civil engineering applications.  相似文献   

7.
Three talc deposits were discovered at Ngoung, Lamal Pougue and Bibodi Lamal (Cameroon). They derived from ultramafic rocks and are enclosed in a Pan-African garnet and muscovite-bearing mica schist of the Yaoundé series. The physico-chemical properties of these talc deposits have been investigated by different techniques including Scanning Electron and Transmission Microscopy (SEM and TEM), chemical analyses, X-ray diffraction (XRD), infrared spectroscopy, particle size analysis by laser diffraction and low temperature gas absorption–desorption. The mineralogical composition deduced from XRD is wide (talc + chlorite + tremolite ± anthophyllite ± chromite ±serpentine ± brucite ± magnesite ± dolomite), but due to the high talc contents (≈ 90%) the samples are close to monomineralic. SEM studies reveal that all talc deposits comprise bundles of platy talc and a few prismatic crystals of amphiboles and other contaminating minerals. Laser diffraction confirms the coarse particle size of the talc crystals. Mode values are as high as 105–170 μm (except two samples displaying 76 and 42 μm) and d50 ranges from 107 to 25 μm. The values of specific surface area measured by BET and t-plot methods range from 1 to 6 m2/g and are correlated with external specific surface area measured by laser diffraction. Discrepancies from the trend are due to the semi-crystalline texture of the samples and mostly to intra-crystalline structural defects revealed by TEM observations. In infrared spectra, specific absorption bands are distinguished for talc, chlorite, tremolite, carbonates, serpentine, brucite and water. Occasional substitutions in minerals led to a shift in some absorption bands. The chemical composition criteria important for most of the industrial applications such as ceramics and pharmaceutics are closely complied with in untreated samples from these deposits. In summary, high talc proportions, chemical compositions, platy morphology and coarse grain size of its crystals lead to the conclusion that the studied deposits are economically attractive. The data set of the present work is an important tool for choosing the beneficiation methods for specific applications.  相似文献   

8.
Chitosan intercalated montmorillonite (Chi-MMT) was prepared by dispersing sodium montmorillonite (Na+-MMT) into chitosan solution at 60 °C for 24 h. The Chi-MMT was characterized by XRD, XRF and FT-IR. The intercalation was accomplished via the ion-exchange of Na+ ions with –NH3+ of chitosan, resulting in the expansion of d001 from 1.42 nm of Na+-MMT to 2.21 nm of Chi-MMT. The chitosan content in the Chi-MMT measured by TGA was about 17 mass%. The adsorption capacity of Chi-MMT was investigated in comparison with the starting Na+-MMT and chitosan using three different cationic dyes, i.e. basic blue 9 (BB9), basic blue 66 (BB66) and basic yellow 1 (BY1). The Chi-MMT showed the highest adsorption capacity in the range of 46–49 mg/g when the initial dye concentration was 500 mg/L, being equivalent to 92–99 wt.% of dye removal. The adsorption capacities of Chi-MMT for all basic dyes increased with an increase of initial dye concentration. An increase of adsorption capability of Chi-MMT was attributed to the existence of intercalate-chitosan. It could enlarge the pore structure of Chi-MMT, facilitating the penetration of macromolecular dyes, and also electrostatically interact with the applied dyes. These results indicated the competency of Chi-MMT adsorbent for basic dye adsorption.  相似文献   

9.
The adsorption of Pb(II) from aqueous solution to MX-80 bentonite was studied using batch technique under ambient conditions. Removal percent (%) and distribution coefficient (Kd) were determined as a function of shaking time, pH, ionic strength and temperature. The results showed that the adsorption behavior of Pb(II) on bentonite was strongly dependent on pH and ionic strength. The presence of complementary cations depressed the adsorption of Pb(II) on bentonite in the order of Li+ ≈ Na+ > K+ at pH 2–5. The adsorption isotherms were simulated by the Langmuir, Freundlich, and Dubinin–Radushkevich (DR) models very well. The thermodynamic parameters (ΔH0, ΔS0, and ΔG0) for the adsorption of Pb(II) were determined at three different temperatures of 291 K, 308 K and 328 K. The adsorption reaction was exothermic and the process of adsorption was favored at low temperature. The results suggest that bentonite is suitable as a sorbent material for the recovery and adsorption of Pb(II) from aqueous solution.  相似文献   

10.
Saudi Arabian clays for lead removal in wastewater   总被引:1,自引:0,他引:1  
Three types of local clays–Tabuk, Baha, and Khaiber–were tested for their abilities to adsorb lead ions from wastewater. The effect of pH on the adsorption of lead ions was also investigated. The clays were treated with hydrochloric acid to activate adsorption sites within clay particles. Untreated Tabuk clay had the largest adsorption capacity, about 30 mg lead/g clay, in comparison with those of Baha and Khaiber clays. The smallest adsorption was observed with Khaiber clay, about 10 mg lead/g clay; this may be attributed to the prior existence of lead within the clay. The adsorption of the acid-activated clays was not enhanced compared to those of untreated clays. The Langmuir model described the experimental data for all untreated clays, while the Freundlich model described the experimental data of untreated Khaiber clay and treated Baha clay. The local clays tested in this study, especially Tabuk clay, may be utilized as cost-effective and efficient adsorbent materials for removing heavy metals from wastewater in Saudi Arabia.  相似文献   

11.
Thermal activation and alkali dissolution of silicon from illite   总被引:1,自引:0,他引:1  
TGA, DTA, FTIR, XRD and 29Si MAS NMR were used to investigate the thermal activation of illite. Illite experiences a series of thermal solid-state phase transformations. Dehydroxylation at 400700 °C forms dehydrated illite, which remains the layered framework of illite. From 700 °C to 1093 °C, Si–O tetrahedral framework remains unchanged. When heated above 1093 °C, the layered structure is destroyed and an amorphous silica-rich glass phase is formed. The mullitization occurs when the temperature exceeds 1100 °C.XRD and FTIR studies show that the silica in silica-rich glass phase dissolves in soda liquor, which indicates that silicon can be removed from illite after thermochemical activation (TCA) followed by alkali leaching. The formation of sodium aluminosilicates of Na96Al96Si96O384 and 0.95Na2O · Al2O3 · 3.25SiO2 · 4.79H2O during alkali leaching may reduce the desilication to a great extent.Desilication tests after TCA show that the suitable activation conditions for illite are 11001150°C and 9060 min. A desilication of 45% was obtained under the conditions for an ore sample bearing about 85% illite, 9% quartz and 5% muscovite.  相似文献   

12.
Cadmium adsorption on kaolinite-based clays in the absence and presence of humic acid was modeled with the aid of the FITEQL 3.2 computer program using a modified Langmuir approach for capacity calculations. Formation of surface–metal ion and surface–humate–metal ion complexes was assumed using the DLM approach. As Cd(II) adsorption was ionic strength-dependent, the adsorption experiments were carried out in solutions containing two different concentrations of an inert electrolyte (0.1 M and 0.005 M NaClO4). The surface sites responsible for the adsorption were assumed to be the permanent charges, ≡S1OH silanol groups and carboxyl groups having pKa values close to that of the silanol groups, and ≡S2OH aluminol groups and phenol groups with pKa values close to that of the aluminol groups, because the studied clays (partly composed of clay soil) contained organic carbon. Cd2+ ions were assumed to bind to the surface in the form of outer-sphere X22− Cd2+ and inner-sphere ≡SOCd+ monodentate complexes. When humic acid was added, Cd(II) adsorption was modeled using a multi-site binding model by the aid of FITEQL3.2. The fit between model and experimental values was excellent in each case. Since the stability of the ternary surface complexes in the presence of humic acid was higher than that of the corresponding binary surface–cadmium ion complexes, the adsorption vs. pH curves were much steeper (and distinctly S-shaped) compared to the tailed curves observed in binary clay–cadmium ion systems. The clay mineral in the presence of humic acid probably behaved more like a chelating ion-exchanger for heavy metal ions than as a simple inorganic ion exchanger.  相似文献   

13.
We report the effects of gas composition pressure (GCP) on the optical, structural and electrical properties of thin amorphous carbon (a-C) films grown on p-type silicon and quartz substrates by microwave surface wave plasma chemical vapor deposition (MW SWP CVD). The films, deposited at various GCPs ranging from 50 to 110 Pa, were studied by UV/VIS/NIR spectroscopy, atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and current–voltage characteristics. The optical band gap of the a-C film was tailored to a relatively high range, 2.3–2.6 eV by manipulating GCPs from 50 to 110 Pa. Also, spin density strongly depended on the band gap of the a-C films. Raman spectra showed qualitative structured changes due to sp3/sp2 carbon bonding network. The surfaces of the films are found to be very smooth and uniform (RMS roughness < 0.5 nm). The photovoltaic measurements under light illumination (AM 1.5, 100 mW/cm2) show that short-circuit current density, open-circuit voltage, fill factor and photo-conversion efficiency of the film deposited at 50 Pa were 6.4 μA/cm2, 126 mV, 0.164 and 1.4 × 10− 4% respectively.  相似文献   

14.
Novel, metal-free and metallo(Cu, Co, Ni, Zn, Pb and Mn)phthalocyanine compounds were synthesized by exposure to microwave irradiation and the products purified. The newly prepared compounds were characterized using elemental analyses, IR, 1H/13C NMR, 1H–1H COSY measurements, MS, UV–vis spectroscopy and DTA/TG analysis. The electronic spectra exhibited an intense π → π* transition with characteristic Q and B bands of the phthalocyanine core, as expected. All decomposition products obtained from DTA/TG analysis were identified; it was found that the thermal stability of each phthalocyanine compound followed the order: MnPc < Metal-free < ZnPc < PbPc < CuPc < CoPc < NiPc.  相似文献   

15.
A diamond vertical Schottky barrier diode (SBD) with nonepitaxial crystallites (NCs) exhibits high leakage current in both its forward and its reverse characteristics. A shunt path current through the grain boundary of the NCs is the dominant mechanism. The defectless device shows a low leakage current of less than 10− 11 A/cm2, and the device yield corresponds to the density of the NCs. The reverse leakage current of the defectless device increases with the reverse field. The leakage current of the diamond SBD is in good agreement with the tunneling model described by thermionic-field emission (TFE) rather than the conventionally used barrier-lowering model. The TFE current dominates when the reverse electric field is larger than 1.2 MV/cm, and current density reaches 10− 6 A/cm2, even at 1.6 MV/cm, which is lower than the avalanche limit.  相似文献   

16.
Nanodiamond comb-shaped lateral field emitter arrays in diode configuration were fabricated and characterized for high current field emission. Nitrogen-incorporated nanocrystalline diamond with grain size of 5–10 nm was micropatterned using RIE to realize interconnected arrays of comb structures equipped with uniformly spaced high aspect ratio lateral emitter fingers. A 9000-fingered nanodiamond lateral comb array diode with an inter-electrode spacing of 8 μm demonstrated a high emission current of  25 mA at an anode voltage of 260 V (electric field  32 V/μm) in 10− 7 Torr vacuum. The lateral emitter configuration shows potential for higher power with no emission current saturation observed. These vacuum micro/nanoelectronic devices comprised of nanodiamond lateral field emission diodes are attractive for low-voltage operating high current electron sources, high-power and high-speed switches, and other extreme demand/extreme environment electronics.  相似文献   

17.
Turkish sepiolite–zirconium oxide mixtures were applied as a support for the silver catalyst in a soot combustion. Sepiolite–Zr–K–Ag–O catalyst was characterized by XRD, N2 adsorption, SEM, TPR-H2 and EGA-MS. The combustion of soot was studied with a thermobalance (TG-DTA). The modification resulted in a partial degradation of the sepiolite structure, however, the morphology was preserved. The adsorption of N2 of the modified sepiolite is a characteristic for mesoporous materials with a wide distribution of pores. The specific surface area SBET equals 83 m2/g and the pores volume is 0.23 cm3/g. The basic character of the surface centers of sepiolite is indicated by CO2 desorption (TPD-MS) at 170 °C and at about 620 °C due to a surface carbonates decomposition. The thermodesorption of oxygen at 650–850 °C indicates the decomposition of AgOx phases at the surface. The presence of AgOx phases is also confirmed by TPR-H2 spectrum (low temperature reduction peak at 130 and 180 °C). The high-temperature reduction at about 570 °C is probably related to Ag–O–M phases on the support.The soot combustion takes place at T50 = 575 °C. Without silver (sepiolite–Zr–K–O) T50 = 560 °C but sepiolite modified with silver (sepiolite–Zr–K–Ag–O) undergoes the same process at T50 = 490 °C.  相似文献   

18.
Smectite-rich claystone–marlstone samples from 12 outcrops located in the Southern Atlas domain of Tunisia were investigated with regard to manufacture of lightweight aggregates (LWAs). The clayey materials mainly consist of smectite, kaolinite and illite, together with quartz, calcite, dolomite and feldspars as accessory components. 10–12 mm pellets were prepared from wet paste and initially heated to 600 °C, 700 °C or 800 °C (depending on the raw material) for at least 2 h in order to avoid any explosion of the aggregate. The pellets were then subjected to a quick firing process at 1180 °C. The addition of 15% of quartz sand (< 250 μm grain size) to the raw materials was found to improve some required pre-treatments and give better expansion properties to some of the aggregates. The addition of 1% used automobile oil to the clay and quartz sand mixtures caused the formation of more gas and a drop in bloating temperature. The obtained LWAs were characterized by physical properties such as apparent density, mechanical resistance, water absorption and expansion. The laboratory results were comparable to those of two commercial LWAs from France (Argidécor®) and Portugal (LECA®) and provide new openings for the utilization of Tunisian claystone in civil engineering work or in agricultural applications.  相似文献   

19.
Uptake of cesium and strontium cations by potassium-depleted phlogopite   总被引:2,自引:1,他引:1  
Phlogopite mica was equilibrated with 1.0 N sodium chloride (NaCl)–0.2 N sodium tetraphenylborate (NaTPB)–0.01 M disodium ethylenediaminetetraacetic acid (EDTA) solution at room temperature resulting in an almost complete removal (92%) of the mica's interlayer K. X-ray powder diffraction analysis provides additional evidence that hydrated Na+ ions had almost completely replaced the interlayer K+. Following equilibration, the c-axis spacing of the mica increased from 10.0 Å to approximately 12.2 Å. Cesium and Sr ion exchange isotherms indicate that K-depleted phlogopite is highly selective for both elements, the Cs+ exchange capacity is 1.26 meq/g or 65% of the theoretical cation exchange capacity and the Sr2+ exchange capacity is 1.94 meq/g or 100% of the theoretical exchange capacity of the mica. Kielland plots indicated that the mica was selective for Cs+ when the equivalent exchange capacity of Cs+ in the exchanger phase (Cs) was < 0.66 and selective for Sr2+ when Sr < 0.41. At equivalent fractions greater than these levels, layer collapse and/or steric effects limit the diffusion of these ions into the interlayers of the mica. Analysis of the Cs+ equilibrated mica utilizing XRD indicated that a collapse of the c-axis spacing had occurred. Based on the high selectivity of < 45-μm K-depleted phlogopite for Sr2+ and Cs+, this material may prove useful as an inorganic ion exchanger for these radioactive isotopes.  相似文献   

20.
In order to assess the evolution of the confinement properties of clay engineered barriers (EBS) when in contact with metallic canisters containing radioactive wastes, Fe(0)-bentonite interactions need to be assessed. “45 days–80 °C” tests were performed using powdered FoCa7 bentonite and metallic iron. Since one fundamental parameter may be the available quantity of Fe(0), a wide range of Iron/Clay mass ratios (I/C) from 0 to 1/3 is used. The confinement power of clay material results from the swelling properties and the retention capacity. Thus, the major criterion which is chosen to assess the evolution of the confinement properties in this study is the variation of Cation Exchange Capacity (CEC). In parallel, the physico-chemical evolution of bentonite is studied using XRD and EDS-TEM microanalyses. The evolution of the distribution of iron environments is obtained by 57Fe Mössbauer spectroscopy.This study evidences that both kaolinite and smectite from the bentonite are altered into SiAlFe gels when in contact with Fe(0). These gels maturates into Fe-rich di-trioctahedral phyllosilicates, whose composition is bounded by the one of odinite and greenalite in a Fe–M+–4Si diagram when I/C = 1/3. Most of all, it is evidenced that the reaction depends on the available quantity of Fe(0). When the I/C ratio is between 1/30 and 1/7.5, the exchange capacity of FoCa7 bentonite starts decreasing, the consumption of Fe(0) becomes significant, the alteration of smectites occurs and secondary oxides are formed. The crystallization of Fe-rich phyllosilicates is observable when I/C ratio is higher, from a threshold between 1/7.5 and 1/5. Above I/C = 1/3.75, initial iron oxides are strongly consumed and participate in the incorporation of Fe2+ and Fe3+ in gels or new phyllosilicates octahedra.These experimental results were used as input data for the prediction of the long-term evolution of the EBS using Crunch reaction-transport model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号