首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
针对现代电力系统中呈现出的互联和多源的特点,首先提出了一种启发式智能优化算法辅助含风光水火储的多区域互联电力系统协同优化负荷频率控制方法,该方法以每个区域的区域控制偏差为目标函数;然后利用鲸鱼智能优化算法鲁棒性强、求解精度高及收敛快速度等优点,对各区域的PID负荷频率控制器参数进行协同优化,使得系统在各种随机扰动下,都能够维持频率稳定和长期安全运行;最后建立含风光水火储的三区域互联电力系统模型,对比不同优化整定方法下的互联电力系统频率和联络线功率偏差,测试系统在不同扰动时各区域的稳定性及所提方法的有效性。实验结果表明,所采取的多区域互联负荷频率控制器协同优化整定方法有效地改善了系统的稳定性,具有良好的鲁棒性和实用性。  相似文献   

2.
李玲芳  陈义宣  许岩  文福拴 《电力建设》2021,42(11):125-132
负荷频率控制(load frequency control, LFC)是维持电力系统安全稳定运行的基础。对于多区域互联电力系统,由于描述动态过程的微分方程组相当复杂,这给负荷频率控制器的设计带来了困难。在此背景下,针对多区域互联电力系统,提出基于交替方向乘子法 (alternating direction method of multiplier, ADMM) 的分布式最优负荷频率控制器设计方法,以取得良好的控制性能,同时具备较高的计算效率。首先,介绍了负荷频率控制问题的微分方程模型。之后,基于二次多项式和矩阵稀疏化构建了分布式最优LFC策略的数学模型,并采用ADMM求解。最后,以三区域互联电力系统为例对所提方法进行了验证。仿真结果表明,针对负荷扰动和时变参数,所提方法能够把各区域的频率偏差和区域间联络线上的功率偏差控制到0。  相似文献   

3.
针对区域互联电力系统受到风电及负荷扰动后,系统频率会出现大幅度波动的问题,提出一种基于云神经网络自适应逆系统的多区域互联电力系统负荷频率控制方法。在分析单一区域电力系统有功输出特性的基础上,建立计及多区域有功输出的互联电力系统负荷频率控制模型。采用自适应逆控制有效解决系统响应和扰动抑制的矛盾。将云模型引入自适应逆系统构建云神经网络辨识器。利用云模型在处理模糊性和随机性等不确定性方面的优势,进一步提高神经网络的辨识能力。仿真结果表明,所设计的云神经网络自适应逆系统不仅可以得到好的动态响应,还可以使风电及负荷引起的扰动减小到最小。  相似文献   

4.
针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的含风电互联电力系统LFC闭环模型。其次,在时间乘误差绝对值积分(integral of time multiplied absolute error, ITAE)性能指标的目标函数中考虑了区域控制器的输出信号偏差,对优化目标函数进行改进。采用性能优良的多元宇宙优化(multi-verse optimizer, MVO)算法先计算后验证的思路,寻优获得最优PID控制器参数。最后,以两区域4机组互联电力LFC系统为例,仿真验证了基于MVO算法结合改进目标函数所获得的PID控制器,比基于MVO算法所获得的PID控制器,对阶跃负荷扰动、随机负荷扰动、风电功率偏差扰动以及系统的参数变化,具有相对较好的鲁棒性能。并且,对控制器参数也具有相对较好的非脆弱性指标。  相似文献   

5.
互联电网负荷频率控制对保障电网安全可靠运行具有重要作用,适宜的控制器参数整定使得电网在各种随机扰动下维持系统频率稳定和联络线功率交换值恒定。针对两区域互联电网的负荷频率控制器参数优化整定问题,提出一种基于智能优化算法的控制器参数整定设计方案。该方案采用最小化时间乘误差绝对值积分作为目标函数,运用灰狼优化算法搜索获得最优化的负荷频率控制器参数。灰狼优化算法模拟了狼群的社会分层机制和群体狩猎行为,使得控制器参数优化整定过程具有快速、高效、自适应和精度高等优点。此外,重点考虑了控制器参数不确定性可能导致的控制器性能衰减,讨论了控制器的脆弱性问题。建立了两区域互联电网负荷频率控制系统仿真模型,采用所提优化算法获取PI/PID型负荷频率控制器参数,仿真结果显示所提算法设计PI/PID控制器相比于传统方法和其他的智能优化算法具有更好的寻优能力和控制性能,并且优化获得的控制器在系统参数和控制器参数不确定性下具有鲁棒性和非脆弱性。  相似文献   

6.
为解决风电并网导致电力系统频率偏差过大的问题,设计了一种基于无模型负荷频率控制和电动汽车辅助调节的频率协调控制策略,能够在系统受到风电和负荷扰动时对其频率偏差进行快速调节。利用新能源电力系统的频率偏差设计了无模型自适应滑模负荷频率控制器,对传统机组进行二次频率调节。同时为充分利用电动汽车的快速响应能力,采用分频技术将区域控制高频偏差信号接入集群电动汽车控制中心作为调频参考指令,使得电动汽车参与辅助系统调频。最后通过Matlab/Simulink软件在不同的工况下进行对比分析,仿真结果验证了所提出策略的有效性。  相似文献   

7.
针对发电能源结构的多元化发展给互联电网负荷频率的稳定性控制带来较大的挑战,建立含抽水蓄能电站的两区域互联电网多元混合发电的负荷频率控制模型,提出一种基于粒子群优化算法的负荷频率线性自抗扰控制器参数整定优化策略,通过粒子群算法的迭代寻优计算获得最优的线性自抗扰控制器参数。考虑互联电网各区域发生不同的负荷扰动,在抽水蓄能电站的抽水和发电2种工况下,对所提出的控制方法进行系统仿真。仿真结果表明,通过粒子群算法优化的负荷频率线性自抗扰控制器,与传统PI控制器对比,前者具有更强的抗扰动能力和适应性,系统动态稳定性更好。  相似文献   

8.
针对光伏新能源电力系统的调频困难问题,提出一种基于改进天牛须搜索算法的粒子群优化算法,实现对光、火、储两区域互联电力系统的负荷频率控制。首先,将储能电池引入混合电力系统中,建立光伏、火电及储能电池的两区域互联电力系统的负荷频率控制模型,并设计出含滤波系数的双积分反馈PID控制器;然后,引入方向改变因子改进天牛须搜索算法,提出一种基于改进天牛须搜索算法的粒子群优化算法,用于优化含滤波系数的双积分反馈PID控制器参数。最后,通过数值仿真,仿真结果表明,本文所提的控制策略在对于频率偏差、区域控制偏差和联络线功率偏差等方面的控制效果、抗扰动能力,优于粒子群优化算法、天牛须搜索算法和含滤波系数的双积分PID控制器。  相似文献   

9.
针对不确定性传输时滞、系统参数、负荷扰动以及新能源间歇性功率,引发系统调频性能下降的问题,该文提出一种考虑控制信号变周期采样的采样比例积分(proportion integration,PI)负荷频率控制(sampling PI load frequency control,SPI-LFC)方案。首先,基于采样网络的静态输出反馈方法,构建电力系统SPI-LFC模型。然后,利用新的双边闭环型Lyapunov泛函,并结合自由矩阵不等式,得到系统的低保守性稳定准则与SPI控制器设计方法。仿真结果表明,提出的负荷频率控制(load frequency control,LFC)方案对电力系统参数和通信网络的不确定性、负荷扰动和新能源的间歇功率具有较强的鲁棒性。  相似文献   

10.
针对外部扰动及系统参数摄动引起微电网负荷频率波动问题,设计了混合H_2/H_∞鲁棒控制器对系统负荷频率进行控制。建立了包含电池的柴油发电机组二次频率控制模型,引入低通滤波器,使电池对系统高频扰动信号具有较好的抑制能力。以误差平方的积分最小作为系统的目标函数,在综合H_2范数表征的系统性能和H_∞范数表征的鲁棒性能下,设计具有多目标约束条件的混合H_2/H_∞鲁棒控制器。采用差分进化算法对控制器加权函数参数进行寻优,使控制器在满足约束条件下达到最优。仿真实验结果表明所提出方法在满足系统鲁棒性能的基础上,同时具备较好的控制输出,保证微电网频率在外部功率扰动和系统参数摄动情况下具有较好的动态性能。  相似文献   

11.
自动发电控制(AGC)是互联电网进行有功调频的首要方法,研究提出了一种基于模型预测控制(MPC)的互联电力系统负荷频率控制(LFC)设计方法。利用MPC算法使得由发电机参数摄动和负荷扰动形成的电网频率波动减小。为验证所提出方案的有效性,建立三区域互联电力系统频率响应模型并仿真,将MPC算法与常规的PID算法控制效果进行比较。结果表明,在负荷扰动、参数摄动和有通信延迟的情况下,MPC技术对互联电网的负荷频率控制性能均优于PID控制。  相似文献   

12.
传统双馈感应风力发电机(DFIG)的解耦控制使其无法响应电网的频率变化。随着风电渗透率的不断提高,电网调频压力不断增大,有必要对含DFIG互联系统AGC优化控制进行研究。首先建立了将风电作为"负的负荷"的两区域AGC模型,通过引入改进的虚拟惯性控制使DFIG具有更好的频率响应的能力。同时以快速消除系统区域控制偏差和风机转速偏差为目的,采用PSO-GSA算法对控制区PID控制器和DFIG转速控制单元PI控制器参数进行优化。仿真结果表明,单个区域受负荷扰动时,风电参与调频时能提供更多的有功功率支撑以减小同步机调频出力,能有效缓解同步机调频压力。PSO-GSA算法较PSO和GSA迭代速度快且适应度值更好,基于PSO-GSA参数优化后的控制器对系统区域频率偏差、联络线功率变化和区域控制偏差信号的超调量和调节时间都有明显改善,增强了系统的稳定性。  相似文献   

13.
随着风电在电力系统中的渗透率不断提高,其出力不确定性对系统频率稳定造成威胁。针对风电接入系统后的频率波动问题,提出变论域模糊PI负荷频率控制策略。为克服传统模糊控制器由于论域固定导致自适应能力有限的缺点,设计的变论域模糊PI负荷频率控制器通过变论域方法实现输入、输出论域的动态调整。为满足风电接入系统后复杂的论域调整需求,基于模糊推理设计新型变论域伸缩因子。典型两区域互联系统仿真实验表明,在不同形式的扰动下,该新型控制器较PI控制器、模糊PI控制器有更好的控制表现,能更好地处理风电出力不确定性对互联电力系统频率稳定的影响。  相似文献   

14.
主要研究考虑风电参与电网调频下的区域电网频率控制。将传统区域模型中的频率输出作为风电惯性环节和一次调频环节的输入,建立了含风电的区域电网数学模型。在此模型基础上研究风电机组对电网频率恢复的贡献,并且通过粒子群算法优化比例积分控制器参数,改进比例积分控制,使其适应包含风电的区域电网。通过仿真对比风电未参与调频、区域一风电参与调频和两区域风电参与调频三种情况下系统频率和区域控制偏差的恢复情况。得出当电力系统发生扰动时,风电参与系统调频能够减少系统频率动态极值,对电力系统的稳定和安全具有积极意义。  相似文献   

15.
针对两区域互联电力系统在受到外界负荷扰动后系统负荷频率的变化规律,基于TBC—TBC联络线频率偏差的控制模式,先后利用经典的PID控制技术和前馈补偿控制技术,对两区域互联电力系统负荷频率的控制算法进行优化研究,使两区域的电力系统在突然遭受负荷扰动时能迅速可靠地减少频率偏差和联络线交换功率偏差,恢复系统的安全稳定运行。在MATLAB7.8.0/Simulink软件的仿真下,其结果表明,经过前馈补偿后的PID控制比经典PID控制具有更佳的控制效果和鲁棒性。  相似文献   

16.
为使互联电网的频率控制具有更好的负荷适应能力,保证电网运行的经济性、稳定性与可靠性,本文提出了无需依赖频率偏差系数、考虑区域调节容量约束、基于互联电网状态空间模型的多变量预测控制器算法设计方案。通过对2个区域电网频率控制系统的建模和仿真,将该预测算法与常规PI调节算法在单、双区域负荷扰动、随机白噪声扰动等方面对系统频率控制动态性能进行了比较,分析结果表明,该预测控制算法可使系统频率的恢复性能显著提高。  相似文献   

17.
以含大规模风电的互联电力系统为研究对象,以抑制风电并网时所引起的系统频率不稳定为目的,提出了基于PSO的负荷频率控制器。传统的负荷频率控制器根据区域控制偏差来调整机组的出力,使区域控制偏差ACE趋于零,从而保证全系统发出的出力和负荷功率相匹配。把风电输出当作一个负的负荷作为等效负荷,在传统的比例积分控制器中引入PSO智能控制,可以进一步提高对等效负荷的控制效果。通过在Matlab/Simulink中构建的含风电的两区域互联电力系统的仿真结果表明,无论是互联电网的频率偏差还是联络线的交换功率,控制指标更优。  相似文献   

18.
高峰  秦翼鸿 《电网技术》1996,20(3):26-29
本文针对多区域互联电力系统的特点,建立了一个考虑各区域扰动影响的综合性能指标,并对比例因子采用智能调整措施,提出了一种分散模糊负荷频率控制器的优化设计方法,对一个两区域互联电力系统的数字仿真结果表明,所设计的分散模糊负荷频率控制器具有良好的控制效果和较强的鲁棒性。  相似文献   

19.
AGC控制器的参数对电网频率控制的动态性能具有重要影响。不合适的控制器参数将可能使得电网在遭遇较大的负荷扰动时失去频率稳定。针对互联电网AGC控制器参数优化整定问题,提出了一种基于社会学习自适应细菌觅食算法的最优PI/PID控制器设计方法。该方法将社会学习机制及自适应步长策略引入到标准细菌觅食算法中,通过改进细菌寻优过程中的趋化、群聚及繁殖等操作,提高算法的收敛速度及寻优精度。建立两区域互联电网AGC系统仿真模型,采用所提算法优化整定其PI/PID控制器参数。仿真结果验证了所提方法的有效性。  相似文献   

20.
应用在LFC控制中常规的模糊调整增益PI控制器和I控制器,只针对单一区域的负荷频率进行控制,并不考虑实际模型中的互相扰动。其中最突出的问题是由于不限制联络线上的功率流动,电能总是从频率高区域流向频率低区域,加剧了频率高区域的控制负担;再加上各区域控制动作的不协调,使得当扰动在不同的时间和幅值时引起系统调节过程的急剧恶化,导致整个系统不稳定。提出一种基于模糊MAMDANI推理算法的模糊监督控制器,采用各个区域的频率偏差作为控制器的输入,监督控制器作为一种前馈补偿,设计输出为一个ACE的倍数,加快调节过程,到达稳态。经过实验仿真数据对比,说明提出的监督控制器能有效提高系统的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号