首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 62 毫秒
1.
The electromagnetic properties of Ba2Co1.8Cu0.2Fe12O22 (Co2Y) and Ba3Co2Fe23.4Zn0.6O41 (Co2Z) were studied by measuring microwave scattering parameters.In the transmission spectra of Ba2Co1.8Cu0.2Fe12O22,a forbidden band emerges due to ferromagnetic resonance,and the permeability will turn to negative in the vicinity of the ferromagnetic resonance frequency.In the complex permittivity spectra of Ba3Co2Fe23.4Zn0.6O41,the negative permittivity can be obtained due to dielectric resonance.Therefore,Co2Y and Co2...  相似文献   

2.
The structural, dielectric and piezoelectric properties of (1-x)(Bi1/2Na1/2) TiO3-xBaTiO3 ceramics were investigated for the compositional range, x=0.02, 0.04, 0.06, 0.08, 0.10. The samples were synthesized by a conventional solid-state reaction technique. All compositions show a single perovskite structure, and X-ray powder diffraction patterns can be indexed using a rhombohedral structure. Lattice constants and lattice distortion increase while the amount of BaTiO3 increases. The X-ray diffraction results show the morphotropic phase boundary (MPB) of (1-x)(Bi1/2Na12) TiO3-xBaTiO3 exists in near x=0.06-0.08. Temperature dependence of dielectric constant eT33/ε0 measurement reveals that all compositions experience one structural phase and two ferroelectric phases transition below 400℃: rhombohedral (or rhombohedral plus tetragonal) ferroelectric phase ←→ tetragonal antiferroelectric phase ←→ tetragonal paraelectric phase. Relaxor behaviors exist in the course of ferroelectric to antiferroelectric phase transition. Dielectric and piezoelectric properties are enhanced in the MPB range for ( 1-x)(Bi1/2Na1/2)TiO3-xBaTiO3.  相似文献   

3.
以PEO-LiC lO4为基质材料,以CeO2和TiO2作为无机填料,采用原位复合法与溶液浇铸法相结合的方法制备了PEO-LiC lO4-CexTi1-xO2全固态复合聚合物电解质薄膜(CPE).利用交流阻抗方法和差示扫描量热法对CPE的电导率、玻璃化转变温度和结晶度进行了研究.结果表明,添加不同粒径的纳米氧化物可在不同尺度上更加有效地破坏聚合物基体的结晶行为,增大离子传输所需的无定形区域,同时,降低了聚合物PEO的玻璃化转变温度和结晶度,并使其结晶度在较长时间内维持在较低水平,最终使离子电导率得到了明显提升.  相似文献   

4.
Microstructure and Optical Properties of the (1-x)GeS2-xP2S5 Glasses   总被引:1,自引:0,他引:1  
To find materials with larger second-order nonlinearity, the Ge-P-S chalcogenide glasses with various ratios of GeS2 : P2S5 were prepared by the melt-quenching method. The microstructure and optical properties of these glasses were characterized by XRD, Raman, Vis- NIR speetroscopy and Maker fringe technique. The second harmonic generation (SHG) was observed in the as-prepared chalcogenide glasses which was ascribed to the thermal stress gradient and/ or the rnicroanisotropic defects ( such as the lone-pair orbital or the valence alternative pairs ) prefer-orientation of the as-prepared glasses.  相似文献   

5.
SMnxZn1-xFe2O4 (x=1,0.9,0.8,0.7,0.6,0.5,0.25,0) nanoparticles were prepared by ball-milling hydrothermal and investigated by X-ray diffraction, DTG and TEM. Nanocrystallite grain size was determined by X-ray linewidth to be from 63 A to 274 A. The thermal properties indicate absorbed water still remain at low temperature, crystalline wate will be decomposed from 230 ℃ to 260 ℃, partial Mn^2+ will be oxidized near 730 ℃. TEM shows the ferrite particles pocess a spherical morphology and uniform nanosize.  相似文献   

6.
xLi2MnO3·(1-x)Li(Ni1/3Co1/3Mn1/3)O2 (x=0.25, 0.40, 0.55) compounds were prepared by low-heating solid state reaction. In the voltage range of 2.70-4.35 V, the discharge capacity of the electrode decreased with the increase of x, with a better cyclability. However, when cycled between 2.7 and 4.6 V, the cathodes delivered much larger capacities and their capacities increased with the introduction of Li2MnO3. Moreover, it was found that the discharge capacity gradually increased with the cycle number. The rea...  相似文献   

7.
A novel red long-lasting phosphor,(Y1-xGdx)2O3:Eu3+,Sm3+,Si4+,Mg2+,was synthesized by the co-precipitation method using oxalate precipitation as the precursor.X-ray diffraction(XRD),scanning electronic microscopy(SEM),integrated thermal analyzer(TG),and photoluminescence spectra(PL) as well as the ST-900PM weak light photometer were used to study the synthesis conditions,morphology,luminescence properties,and the decay time of the phosphor.The XRD results show that the products synthesized at 1400°C for 4 h...  相似文献   

8.
First-principles calculations have been carried out to investigate the structural stabilities, electronic structures and elastic properties of Mg17Al12, Al2Ca and Al4Sr phases. The optimized structural parameters are in good agreement with the experimental and other theoretical values. The calculated formation enthalpies and cohesive energies show that Al2Ca has the strongest alloying ability, and Al4Sr has the highest structural stability. The densities of states (DOS), Mulliken electronic populations, and electronic charge density difference are obtained to reveal the underlying mechanism of structural stability. The bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are estimated from the calculated elastic constants. The mechanical properties of these phases are further analyzed and discussed. The Gibbs free energy and Debye temperature are also calculated and discussed.  相似文献   

9.
The synthesis of Friedel’s salt(FS: 3Ca O·A12O3·Ca Cl2·10H2O) by the reaction of calcium chloride with sodium aluminate was investigated. Factors affecting the preparation of Friedel’s salt, such as reaction temperature, initial concentration, titration speed, aging time and molar Ca/Al ratio were studied in detail. XRD, SEM images and particle size distribution show that the reaction temperature, aging time and molar Ca/Al ratio have significant effect on the composition, crystal morphology, and average particle size of the obtained samples. In addition, the initial Ca Cl2 concentration and Na Al O2 titration speed do not significantly influence the morphology and particle size distribution of Friedel’s salt. With the optimization of the operating conditions, the crystals can grow up to a average size of about 28 um, showing flat hexagonal(or pseudohexagonal) crystal morphology. Moreover, two potential mechanisms of Friedel’s salt formation including adsorption mechanism and anion-exchange mechanism were discussed. In the adsorption mechanism, Friedel’s salt forms due to the adsorption of the bulk Cl- ions present in the solution into the interlayers of the principal layers, [Ca2Al(OH-)6·2H2O]+, in order to balance the charge. In the anion-exchange mechanism, the free-chloride ions bind with the AFm(a family of hydrated compounds found in cement) hydrates to form Friedel’s salt by anion-exchange with the ions present in the interlayers of the principal layer, [Ca2Al(OH-)6· 2H2O]+-OH-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号