首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Artificial neural networks: a review of commercial hardware   总被引:1,自引:0,他引:1  
Artificial neural networks (ANN) became a common solution for a wide variety of problems in many fields, such as control and pattern recognition to name but a few. Many solutions found in these and other ANN fields have reached a hardware implementation phase, either commercial or with prototypes. The most frequent solution for the implementation of ANN consists of training and implementing the ANN within a computer. Nevertheless this solution might be unsuitable because of its cost or its limited speed. The implementation might be too expensive because of the computer and too slow when implemented in software. In both cases dedicated hardware can be an interesting solution.

The necessity of dedicated hardware might not imply building the hardware since in the last two decades several commercial hardware solutions that can be used in the implementation have reached the market.

Unfortunately not every integrated circuit will fit the needs: some will use lower precision, some will implement only certain types of networks, some don’t have training built in and the information is not easy to find.

This article is confined to reporting the commercial chips that have been developed specifically for ANN, leaving out other solutions.

This option has been made because most of the other solutions are based on cards which are built either with these chips, Digital Signal Processors or Reduced Instruction Set Computers.  相似文献   


2.
Predicting grinding burn using artificial neural networks   总被引:1,自引:0,他引:1  
This paper introduces a method for predicting grinding burn using artificial neural networks (ANN). First, the way to model grinding burn via ANN is presented. Then, as an example, the prediction of grinding burn of ultra-strength steel 300M via ANN is given. Very promising results were obtained.  相似文献   

3.
The classification problem of assigning several observations into different disjoint groups plays an important role in business decision making and many other areas. Developing more accurate and widely applicable classification models has significant implications in these areas. It is the reason that despite of the numerous classification models available, the research for improving the effectiveness of these models has never stopped. Combining several models or using hybrid models has become a common practice in order to overcome the deficiencies of single models and can be an effective way of improving upon their predictive performance, especially when the models in combination are quite different. In this paper, a novel hybridization of artificial neural networks (ANNs) is proposed using multiple linear regression models in order to yield more general and more accurate model than traditional artificial neural networks for solving classification problems. Empirical results indicate that the proposed hybrid model exhibits effectively improved classification accuracy in comparison with traditional artificial neural networks and also some other classification models such as linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), K-nearest neighbor (KNN), and support vector machines (SVMs) using benchmark and real-world application data sets. These data sets vary in the number of classes (two versus multiple) and the source of the data (synthetic versus real-world). Therefore, it can be applied as an appropriate alternate approach for solving classification problems, specifically when higher forecasting accuracy is needed.  相似文献   

4.
Review of pulse-coupled neural networks   总被引:2,自引:0,他引:2  
This paper reviews the research status of pulse-coupled neural networks (PCNN) in the past decade. Considering there are too many publications about the PCNN, we summarize main approaches and point out interesting parts of the PCNN researches rather than contemplate to go into details of particular algorithms or describe results of comparative experiments. First, the current status of the PCNN and some modified models are briefly introduced. Second, we review the PCNN applications in the field of image processing (e.g. image segmentation, image enhancement, image fusion, object and edge detection, pattern recognition, etc.), then applications in other fields also are mentioned. Subsequently, some existing problems are summarized, while we give some suggestions for the solutions to some puzzles. Finally, the trend of the PCNN is pointed out.  相似文献   

5.
A methodology with back-propagation neural network models is developed to explore the artificial neural nets (ANN) technology in the new application territory of design optimization. This design methodology could go beyond the Hopfield network model, Hopfield and Tank (1985), for combinatorial optimization problems In this approach, pattern classification with back-propagation network, the most demonstrated power of neural networks applications, is utilized to identify the boundaries of the feasible and the infeasible design regions. These boundaries enclose the multi-dimensional space within which designs satisfy all design criteria. A feedforward network is then incorporated to perform function approximation of the design objective function. This approximation is performed by training the feedforward network with objective functions evaluated at selected design sets in the feasible design regions. Additional optimum design sets in the classified feasible regions are calculated and included in the successive training sets to improve the function mapping. Iteration is continued until convergent criteria are satisfied. This paper demonstrates that the artificial neural nets technology provides a global perspective of the entire design space with good and near optimal solutions. ANN can indeed be a potential technology for design optimization.  相似文献   

6.
In recent years, functional networks have emerged as an extension of artificial neural networks (ANNs). In this article, we apply both network techniques to predict the catches of the Prionace Glauca (a class of shark) and the Katsowonus Pelamis (a variety of tuna, more commonly known as the Skipjack). We have developed an application that will help reduce the search time for good fishing zones and thereby increase the fleets competitivity. Our results show that, thanks to their superior learning and generalisation capacities, functional networks are more efficient than ANNs. Our data proceeds from remote sensors. Their spectral signatures allow us to calculate products that are useful for ecological modelling. After an initial phase of digital image processing, we created a database that provides all the necessary patterns to train both network types.  相似文献   

7.
人工神经网络在传感器数据融合中的应用   总被引:1,自引:2,他引:1  
针对压力传感器对温度的交叉灵敏度,采用BP人工神经网络法对其进行数据融合处理。消除温度对压力传感器的影响,大大提高了传感器的稳定性及其精度,效果良好。  相似文献   

8.
The main aim of this study is to determine the factors influencing the adoption of Near Field Communication (NFC)-enabled mobile credit card, an innovation in contactless payment for the future generation. Constructs from psychological science, trust-based and behavioral control theories were incorporated into the parsimonious TAM. Using empirical data and Structural Equation Modeling-Artificial Neural Networks approach together with multi group analysis, the effects of social influence, personal innovativeness in information technology, trust, perceived financial cost, perceived usefulness and perceived ease of use were examined. The significance of indirect effects was examined using the bias-corrected percentile with two-tailed significance through bootstrapping. Gender, age, experience and usage were introduced as the moderator variables with industry being the control variable in the research model. The scarcity in studies regarding the moderating effects of these variables warranted the needs to further investigate their impacts. The mediating effect of perceived usefulness was examined using the Baron–Kenny’s technique. The findings of this study have provided invaluable theoretical, methodological and managerial implications and will contribute to the decision making process by CEOs, managers, manufacturers and policy makers from the mobile manufacturing industry, businesses and financial institutions, mobile commerce, mobile telecommunication providers, mobile marketers, private or government practitioners and etc.  相似文献   

9.
Vibration behavior of any solid structure reveals certain dynamic characteristics and property parameters of that structure. Inverse problems dealing with vibration response utilize the response signals to find out input factors and/or certain structural properties. Due to certain drawbacks of traditional solutions to inverse problems, ANNs have gained a major popularity in this field. This paper reviews some earlier researches where ANNs were applied to solve different vibration-based inverse parametric identification problems. The adoption of different ANN algorithms, input-output schemes and required signal processing were denoted in considerable detail. In addition, a number of issues have been reported, including the factors that affect ANNs’ prediction, as well as the advantage and disadvantage of ANN approaches with respect to general inverse methods Based on the critical analysis, suggestions to potential researchers have also been provided for future scopes.  相似文献   

10.
In this paper, we investigate the problem of time series forecasting using single hidden layer feedforward neural networks (SLFNs), which is optimized via multiobjective evolutionary algorithms. By utilizing the adaptive differential evolution (JADE) and the knee point strategy, a nondominated sorting adaptive differential evolution (NSJADE) and its improved version knee point-based NSJADE (KP-NSJADE) are developed for optimizing SLFNs. JADE aiming at refining the search area is introduced in nondominated sorting genetic algorithm II (NSGA-II). The presented NSJADE shows superiority on multimodal problems when compared with NSGA-II. Then NSJADE is applied to train SLFNs for time series forecasting. It is revealed that individuals with better forecasting performance in the whole population gather around the knee point. Therefore, KP-NSJADE is proposed to explore the neighborhood of the knee point in the objective space. And the simulation results of eight popular time series databases illustrate the effectiveness of our proposed algorithm in comparison with several popular algorithms.  相似文献   

11.
In this paper a steganalysis technique is proposed for pixel-value differencing method. This steganographic method, which is immune against conventional attacks, performs the embedding in the difference of the values of pixel pairs. Therefore, the histogram of the differences of an embedded image is different as compared with a cover image. A number of characteristics are identified in the difference histogram that show meaningful alterations when an image is embedded. Five distinct multilayer perceptrons neural networks are trained to detect different levels of embedding. Every image is fed to all networks and a voting system categorizes the image as stego or cover. The implementation results indicate 88.6% success in correct categorization of the test images that contained more than 20% embedding. Furthermore, using a neural network an estimator is presented which gives an estimate of the amount of the MPVD embedding in an image. Implementation of the estimator showed an average accuracy of 88.3% in the estimation of the amount of embedding.  相似文献   

12.
In the present paper Artificial Neural Networks (ANNs) models are proposed for the prediction of surface roughness in Electrical Discharge Machining (EDM). For this purpose two well-known programs, namely Matlab® with associated toolboxes, as well as Netlab®, were emplo- yed. Training of the models was performed with data from an extensive series of EDM experiments on steel grades; the proposed models use the pulse current, the pulse duration, and the processed material as input parameters. The reported results indicate that the proposed ANNs models can satisfactorily predict the surface roughness in EDM. Moreover, they can be considered as valuable tools for the process planning for EDMachining.  相似文献   

13.
It is time to locate connectionist representation theory in the new wave of robotics research. The utility of representations developed in artificial neural networks (ANNs) during learning has been demonstrated in cognitive science research since the 1980s. The research reported here puts learned representations to work in a decentered control task, the disembodied arm problem, in which a mobile robot operates an arm fixed to a table to pick up objects. There is no physical linkage between the arm and the robot and so the robot's point of view must be decentered. This is done by developing a modular Artificial Neural Net system in three stages: (i) a classifier net is trained with laser scan data to output transformationally invariant position classes; (ii) an arm net is trained for picking up objects; (iii) an inter net is trained to communicate and coordinate the sensing and acting. The completed system is shown to create new nonsymbolic transformationally invariant representations in order to perform the effective generalization of decentered viewpoints.  相似文献   

14.
15.
Remote health monitoring adoption model based on artificial neural networks   总被引:1,自引:0,他引:1  
The purpose of this research is to utilize the adoption model of remote health monitoring established by artificial neural networks (ANNs). The adoption model by the naming is the healthcare information adoption model (HIAM) that it is created first time by myself. The HIAM focused on citizens in Taiwan as research subjects. The main research result showed that people’s perceived usefulness and benefits (PUB) must be raised in order to effectively increase the adoption of remote health monitoring. Moreover, this research has proved that the utilization of the adoption model of remote health monitoring established by ANN based on the HIAM is feasible. These findings may offer significant reference for subsequent studies.  相似文献   

16.
Effective one-day lead runoff prediction is one of the significant aspects of successful water resources management in arid region. For instance, reservoir and hydropower systems call for real-time or on-line site-specific forecasting of the runoff. In this research, we present a new data-driven model called support vector machines (SVMs) based on structural risk minimization principle, which minimizes a bound on a generalized risk (error), as opposed to the empirical risk minimization principle exploited by conventional regression techniques (e.g. ANNs). Thus, this stat-of-the-art methodology for prediction combines excellent generalization property and sparse representation that lead SVMs to be a very promising forecasting method. Further, SVM makes use of a convex quadratic optimization problem; hence, the solution is always unique and globally optimal. To demonstrate the aforementioned forecasting capability of SVM, one-day lead stream flow of Bakhtiyari River in Iran was predicted using the local climate and rainfall data. Moreover, the results were compared with those of ANN and ANN integrated with genetic algorithms (ANN-GA) models. The improvements in root mean squared error (RMSE) and squared correlation coefficient (R2) by SVM over both ANN models indicate that the prediction accuracy of SVM is at least as good as that of those models, yet in some cases actually better, as well as forecasting of high-value discharges.  相似文献   

17.
The studies on interpretability of neural networks have been playing an important role in understanding the knowledge developed through their learning and promoting the use of neurocomputing in practical problems. The rule-based setting in which neural networks are interpreted provides a convenient way of expressing knowledge in a transparent and modular manner and at a desired level of granularity (specificity). In this study, we formulate a certain engineering-based style of interpretation in which a given neural network is represented as a collection of local linear models where such models are developed around a collection of linearization nodes. The notion of multi-linearization of neural networks captures the essence of the proposed interpretation. We formulate the problem as an optimization of (i) a collection of linearization nodes around which individual linear models are formed and (ii) aggregation of the individual linearizations, where the linearization fields are subject to optimization. Given the non-differentiable character of the problem, we consider the use of population-based optimization of Particle Swarm Optimization (PSO). Numeric experiments are provided to illustrate the main aspects of the multi-linearization of neural networks.  相似文献   

18.
Autoregressive integrated moving average (ARIMA) models are one of the most important time series models applied in financial market forecasting over the past three decades. Improving forecasting especially time series forecasting accuracy is an important yet often difficult task facing forecasters. Both theoretical and empirical findings have indicated that integration of different models can be an effective way of improving upon their predictive performance, especially when the models in the ensemble are quite different. In the literature, several hybrid techniques have been proposed by combining different time series models together, in order to yield results that are more accurate. In this paper, a new hybrid model of the autoregressive integrated moving average (ARIMA) and probabilistic neural network (PNN), is proposed in order to yield more accurate results than traditional ARIMA models. In proposed model, the estimated values of the ARIMA model are modified based on the distinguished trend of the ARIMA residuals and optimum step length, which are respectively obtained from a probabilistic neural network and a mathematical programming model. Empirical results with three well-known real data sets indicate that the proposed model can be an effective way in order to construct a more accurate hybrid model than ARIMA model. Therefore, it can be used as an appropriate alternative model for forecasting tasks, especially when higher forecasting accuracy is needed.  相似文献   

19.
Forecasting the international trade of rice is difficult because demand and supply are affected by many unpredictable factors (e.g., trade barriers and subsidies, agricultural and environmental factors, meteorological factors, biophysical factors, changing demographics, etc.) that interact in a complex manner. This paper compares the performance of artificial neural networks (ANNs) with exponential smoothing and ARIMA models in forecasting rice exports from Thailand. To ascertain that the models can reproduce acceptable results on unseen future, we evaluated various aggregate measures of forecast error (MAE, MSE, MAPE, and RMSE) during the validation process of the models. The results reveal that while the Holt–Winters and the Box–Jenkins models showed satisfactory goodness of fit, the models did not perform as well in predicting unseen data during validation. On the other hand, the ANNs performed relatively well as they were able to track the dynamic non-linear trend and seasonality, and the interactions between them.  相似文献   

20.
In this study, differential evolution algorithm (DE) is proposed to train a wavelet neural network (WNN). The resulting network is named as differential evolution trained wavelet neural network (DEWNN). The efficacy of DEWNN is tested on bankruptcy prediction datasets viz. US banks, Turkish banks and Spanish banks. Further, its efficacy is also tested on benchmark datasets such as Iris, Wine and Wisconsin Breast Cancer. Moreover, Garson’s algorithm for feature selection in multi layer perceptron is adapted in the case of DEWNN. The performance of DEWNN is compared with that of threshold accepting trained wavelet neural network (TAWNN) [Vinay Kumar, K., Ravi, V., Mahil Carr, & Raj Kiran, N. (2008). Software cost estimation using wavelet neural networks. Journal of Systems and Software] and the original wavelet neural network (WNN) in the case of all data sets without feature selection and also in the case of four data sets where feature selection was performed. The whole experimentation is conducted using 10-fold cross validation method. Results show that soft computing hybrids viz., DEWNN and TAWNN outperformed the original WNN in terms of accuracy and sensitivity across all problems. Furthermore, DEWNN outscored TAWNN in terms of accuracy and sensitivity across all problems except Turkish banks dataset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号