共查询到20条相似文献,搜索用时 0 毫秒
1.
6013铝合金的热变形行为及热加工图 总被引:1,自引:0,他引:1
采用Gleeble-3500热模拟实验机,分析6013铝合金在变形温度613~773 K、应变速率10-3~10 s-1和工程变形量10%~60%条件下的平面热压缩变形流变应力演化规律,求解热变形本构方程,建立热加工图,探讨其热变形行为机理。结果表明,6013铝合金的流变软化机制以动态回复为主;采用包含关于变形温度函数的幂函数本构方程可较好的预测其流变行为,与实测值的平均相对误差仅为6.631%;确定了单道次大应变热轧成型最佳工艺参数区间:673 KT773 K且5×10-3s-1ε10-1s-1和多道次热轧最佳工艺参数区间:633 KT733 K且10-1s-1ε1 s-1。 相似文献
2.
3.
5.
《材料热处理学报》2017,(6)
采用Gleebe-3500型热模拟试验机对7075铝合金进行等温恒应变速率热压缩实验,研究了该合金在变形温度为250~450℃、应变速率为0.001~1 s~(-1)条件下的热变形行为,并据此建立了热加工图。结果表明:流变真应力随应变速率的升高而增大,随变形温度的升高而减小;经250℃、16 h欠时效处理的样品,其峰值应力要显著大于未经时效的样品;真应变为0.3和0.7的热加工图在250~350℃的温度区间、0.01~1 s~(-1)的应变速率区间均出现流变失稳;16 h欠时效态7075铝合金的最佳热变形参数为:变形温度400~450℃、应变速率0.01~0.001 s~(-1)。 相似文献
6.
使用Gleeble-3500热模拟试验机研究了6082铝合金在变形温度为350~500℃、应变速率为0.01~10 s-1条件下沿挤压变形方向的热变形行为,得到了真应力-真应变曲线,并建立了本构方程。为了研究挤压态6082铝合金型材的热加工性能,绘制了应变ε=0.3、0.9和峰值应力下的热加工图,并利用光学显微镜(OM)、扫描电子显微镜(SEM)、显微硬度计等设备分析了热压缩后的显微组织、第二相尺寸和材料硬度变化。结果表明:热压缩过程中,挤压态6082铝合金的强度无明显降低,主要软化机制为动态回复;第二相含量随着变形温度的升高逐渐降低,而第二相破碎程度随之升高,且维氏硬度也随之增大。经计算,挤压态6082铝合金的热变形激活能为205.74 kJ·mol-1,该合金较好的热加工工艺范围为465~500℃/0.01~0.7 s-1。 相似文献
7.
以TA1/6061铝合金双金属为研究对象,采用Gleebe-3800热模拟试验机,在变形温度为350~500℃、应变速率为0.01~1 s-1、变形量为40%的条件下进行了单向热压缩复合试验,研究了TA1/6061铝合金双金属的热变形行为,建立了TA1/6061铝合金双金属本构方程及热加工图。结果表明,TA1/6061铝合金双金属热变形过程中的流变应力随着温度的上升和应变速率的降低而减小;基于试验数据建立的Arrhenius本构方程可以有效预测特定真应变下的真应力,其相关性系数为0.99642,热变形激活能为231434 J·mol-1;基于热加工图、SEM图像和EDS线扫描图像,确定最优热加工工艺窗口为:变形温度为482~500℃,应变速率为0.011~0.192 s-1。 相似文献
8.
9.
采用高温等温压缩试验,对Cu?Ni?Si?P合金在应变速率0.01~5?1、变形温度600~800°C条件下的高温变形行为进行了研究,得出了该合金热压缩变形时的热变形激活能Q和本构方程。根据实验数据与热加工工艺参数构建了该合金的热加工图,利用热加工图对该合金在热变形过程中的热变形工艺参数进行了优化,并利用热加工图分析了该合金的高温组织变化。热变形过程中Cu?Ni?Si?P合金的流变应力随着变形温度的升高而降低,随着应变速率的提高而增大,该合金的动态再结晶温度为700°C。该合金热变形过程中的热变形激活能Q为485.6 kJ/mol。通过分析合金在应变为0.3和0.5时的热加工图得出该合金的安全加工区域的温度为750~800°C,应变速率为0.01~0.1 s?1。通过合金热变形过程中高温显微组织的观察,其组织规律很好地符合热加工图所预测的组织规律。 相似文献
10.
11.
12.
采用真空非自耗熔炼炉制备了低成本Ti-6Al-2.5V-1.5Fe-0.15O合金。利用Gleeble-1500D热模拟机,研究了其热加工参数为:变形温度875~1100℃、应变速率0.001~1 s~(-1),变形量为70%时的热变形行为。建立了Ti-6Al-2.5V-1.5Fe-0.15O合金考虑应变量的Arrhenius本构方程,基于动态材料模型建立热加工图。结果表明:变形温度升高,应变速率降低,流变应力降低。通过本构方程计算可得两相区平均热激活能为398.824 kJ/mol,远大于纯钛自激活能,表明热变形软化机制与动态再结晶有关。单相区热激活能为210.93 kJ/mol,略大于纯钛自激活能,以动态回复为主。通过热加工图确定2个失稳区,中等变形温度(950~1070℃)、高应变速率(0.31~0.1 s~(-1))易发生绝热剪切。结合热加工图确定适合的加工区间:应变速率为0.001~0.01 s~(-1),变形温度为875~925℃。 相似文献
13.
《中国有色金属学报》2020,(6)
借助电子背散射衍射(EBSD)和透射电子显微镜(TEM)研究6082铝合金在623~773 K和0.01~5 s~(-1)条件等温热压缩时的动态再结晶行为。结果表明:6082铝合金真应力-应变曲线虽无明显单峰值特征,但仍发生动态再结晶,并且动态再结晶程度与Z参数紧密相关。在ln Z=24.9014(723 K, 0.1 s~(-1))热压缩时,动态再结晶体积分数最高,为38.6%。应用加工硬化率确定了动态再结晶初始临界应变,建立临界应变与Z参数之间的定量关系,得到动态再结晶临界应变方程。结合EBSD分析测试结果建立6082铝合金动态再结晶动力学模型。微观组织分析发现,原始晶粒内形成的亚晶结构随着变形的进行持续吸收位错,其取向差不断增大至大角度晶界,从而形成新的再结晶晶粒。在原始晶界附近通过亚晶界迁移引起亚晶粗化,使其小角度晶界形成大角度晶界的连续动态再结晶是其动态再结晶的主要机制。 相似文献
14.
为研究40Cr钢的热变形行为和热加工性能,在Gleeble1500型热模拟试验机上对40Cr钢进行了不同参数下的等温热压缩试验,建立了包含再结晶特征的40Cr钢高温流变应力模型,并绘制了其热加工图。结果表明,所建立的流动应力模型能够很好地预测40Cr钢不同热变形条件下的应力-应变曲线。观察了不同变形条件下热压缩试样的微观组织,发现失稳区域为不完全动态再结晶的“项链”组织,非失稳区域中耗散值较小区域和较大区域分别为平均晶粒尺寸为128.2和20.4μm的动态再结晶组织,验证了热加工图的可靠性。结合微观组织观察和热加工图分析,可以确定40Cr钢的最佳热加工区域为温度1050~1150℃、应变速率1~10 s-1。 相似文献
15.
通过真空非自耗熔炼炉制备了低成本Ti-6Al-2.5V-1.5Fe-0.15O合金,利用Gleeble-1500D热模拟机,研究了其热加工参数为:变形温度875℃-1100℃、应变速率0.001s-1-1s-1,变形量为70%时的热变形行为,建立了Ti-6Al-2.5V-1.5Fe-0.15O合金考虑应变量的Arrhenius本构方程,基于动态材料模型建立热加工图。研究结果表明:变形温度升高,应变速率降低,流变应力降低。通过本构方程计算可得两相区平均热激活能为398.824KJ/mol,远大于纯钛自激活能,表明热变形软化机制与动态再结晶有关。单相区热激活能为210.93KJ/mol,略大于纯钛自激活能,以动态回复为主。通过热加工图确定两个失稳区,中等变形温度(950℃-1070℃)高应变速率(0.31-0.1s-1)易发生绝热剪切,结合热加工图确定适合的加工区间:应变速率为0.001-0.01s-1,变形温度为875℃-925℃。 相似文献
16.
通过热模拟压缩实验研究了GH2907合金在变形温度为950~1100℃、应变速率为0.01~10s-1、变形量为60%条件下的热变形行为,流变应力随着变形温度的升高或应变速率的降低而显著降低;根据Arrhenius方程和Zener-Hollomon参数,计算了热变形激活能Q,建立了GH2907合金的热变形本构方程;根据动态材料模型,确定了GH2907合金在不同应变下的功率耗散图,功率耗散效率η较高的区域位于温度为1050~1100℃,应变速率为0.01~0.03s-1范围,在该变形区域内组织发生了明显的动态再结晶现象;基于Preased失稳判据,绘制了GH2907合金在不同应变下的热加工图,流变失稳区位于高温高应变速率区域,即温度为970~1100℃,应变速率为0.6~10s-1范围,在该变形区域内动态再结晶晶粒沿着绝热剪切带和局部流动分布。根据GH2907合金热加工图及微观组织分析得到适宜的加工区域是温度为1050~1100℃,应变速率为0.01~0.03s-1范围。 相似文献
17.
通过真空熔炼制备了Cu-1Ti-1Ni-0.1Mg合金,采用Gleeble-1500D数控动态-力学模拟试验机,在0.001~10 s-1应变速率和550~950℃变形温度下,对Cu-1Ti-1Ni-0.1Mg合金进行了热变形试验。在流变应力的基础上得到了合金的本构方程,绘制了其热加工图,分析了合金的微观组织演变和析出相类型。结果表明:Cu-1Ti-1Ni-0.1Mg合金的峰值应力随着变形温度的降低和应变速率的增加而增大。变形温度的升高对动态再结晶有促进作用,合金的主要析出相为CuNi2Ti。Cu-1Ti-1Ni-0.1Mg合金的最佳热加工区域为应变速率0.001~0.15 s-1,变形温度850~950℃。 相似文献
18.
在应变速率为0.1~10 s~(-1)、变形温度为800~1200℃的变形条件下,利用Gleeble-1500热模拟机对304奥氏体不锈钢进行单向热压缩实验,研究其高温下的流变行为。根据实验数据,304奥氏体不锈钢的流变应力随温度和应变速率变化明显,应变速率越大,变形温度越低,流变应力越大。基于Arrhenius模型推导出材料的热变形本构方程,并算得材料的热变形激活能为486.0 k J·mol~(-1)。建立了真应变为0.7时的热加工图,结合微观组织分析表明:变形温度为1025~1200℃、应变速率为0.1~0.8 s~(-1)时,材料功率耗散系数大于26%,变形过程中发生动态再结晶,此范围为304奥氏体不锈钢的最佳工艺参数。 相似文献