首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在Gleeble-3800热模拟机上采用等温压缩实验研究了5182铝合金在变形温度为573 K~723 K、应变速率为0. 01 s-1~10 s~(-1)、真应变为0~0. 69条件下的高温流变应力行为,建立了5182铝合金热变形的本构方程和热加工图。结果表明:5182铝合金在热变形时,其流变应力呈现出稳态流变特征,随变形温度的升高而降低,随应变速率的增加而增大,但在应变速率ε·≥1 s~(-1)高应变速率下,则出现动态软化现象;可以采用包含Z参数的双曲正弦函数关系来描述5182铝合金高温变形时的流变应力行为;最佳的热变形区域为变形温度400℃~420℃、应变速率0. 01 s~(-1)~0. 1 s~(-1)。  相似文献   

2.
利用Gleeble-3500热力模拟实验机研究AA6061铝合金铸坯平面压缩变形行为,分析其流变应力和组织演变规律。结果表明:平面压缩过程中流变应力随着变形温度的升高和应变速率的减小而逐渐降低;低温和低应变速率下(573 K/0.01 s~(-1)),随着应变量增大,达到峰值应力后应力软化程度较大。同时,建立了描述AA6061铝合金铸坯平面压缩变形行为的双曲正弦型本构关系模型。大变形区的晶粒呈扁长的板条状,其晶界处有大量的第2相析出,晶粒的长径比随温度升高而减小,随应变速率增大而增大,小变形区晶粒组织形貌主要为椭圆形等轴状晶;高温下(723 K),部分第2相溶入晶粒内部,热变形组织演变机理主要为动态回复。  相似文献   

3.
研究了铸态KBM10镁合金在温度573~673K,应变速率5×10~(-4)~5×10~(-2)s~(-1)内高温压缩变形过程中的微观组织演变,分析了变形温度和应变速率对该合金动态再结晶行为的影响,分析了温度、应变速率与流变应力的关系。结果表明:KBM10镁合金高温压缩塑性变形的主要软化机制为动态再结晶,温度和应变速率二者均是影响再结晶形核和长大的主要因素。在本实验条件下,KBM10镁合金的变形本构方程可拟合为双曲正弦函数ε=-A[sinh(ασ)]~nexp(-Q/RT),其中应力指数n为4.717,激活能为149.8 kJ/mol.  相似文献   

4.
汽车用5182铝合金板材的温拉伸流变行为   总被引:5,自引:0,他引:5  
在变形温度为323~573 K、应变速率为0.001~0.1/s条件下,采用Instron-8032电子拉伸实验机对汽车用5182铝合金板的流变行为进行研究,采用修正后的Fields-Backofen方程描述5182铝合金温拉伸时的流变行为,建立5182铝合金在温拉伸时的应力-应变本构模型.结果表明:在同一应变速率下,合金的流变应力随温度升高而降低;对于较高温度(448、523和573 K)、较低应变速率(ε=0.001/s),合金的流变应力出现明显的峰值应力,表现出动态再结晶特征;随着应变速率增加,合金的流变应力呈现稳态,表现出动态回复特征.  相似文献   

5.
为研究2A14铝合金的动态再结晶模型和热变形组织演变规律,在Gleeble-3500试验机上对2A14铝合金进行等温压缩,试验温度为573~773 K,应变速率为0.01~10 s~(-1),压下量为60%,变形后淬火保留高温组织。通过其流变应力曲线,建立临界应变和峰值应变的关系,并建立动态再结晶体积分数预测模型。通过对其组织晶粒演变分析,发现动态再结晶晶粒与变形温度和速率关系密切,会随着温度的增高,应变速率的降低而增大。  相似文献   

6.
沈智  谢谈  梁培新 《锻压技术》2017,(12):144-149
采用DDL50高温电子万能试验机,在变形温度为298~573 K、应变速率为0.0001~0.01 s-1时,针对6014铝合金薄板进行温拉伸实验研究,基于FieldsBackofen本构方程进行修正,建立了6014铝合金的温拉伸本构模型以描述6014铝合金温拉伸时的流变行为。结果表明:相同应变速率下,随着温度升高,6014铝合金的流变应力降低,伸长率先增加后下降,并且当温度为473 K时,伸长率达到最大值。通过断口扫描电镜照片分析了6014铝合金在473和573 K时断裂过程的差异,温度为473 K时,断口韧窝大且深,表现为典型的韧性断裂,而温度为573 K时,韧窝小且浅,表现为脆性断裂,从微观角度解释了不同温度下伸长率的差异。  相似文献   

7.
汽车用5182铝合金温变形行为及组织   总被引:1,自引:0,他引:1  
通过单向温拉伸试验以及扫描电镜和透射电镜观察,研究了汽车用5182铝合金板在变形温度为323~573 K,应变速率为0.001~0.1 s-1条件下的流变行为及微观组织。结果表明,在变形温度≥448 K、应变速率.ε=0.001 s-1条件下,5182合金出现明显的峰值应力,而当应变速率0.01~0.1 s-1时,合金的流变应力呈现稳态;当应变速率.ε=0.001 s-1时,随着变形温度的升高,合金单向温拉伸断口由典型的混合型断裂特征演变成典型的韧性断裂特征,合金产生了动态再结晶。  相似文献   

8.
采用Gleeble-3500热模拟试验机通过压缩复合变形制备了705/706铝合金叠层材料,研究了705和706两种铝合金在温度为573~773K,应变速率为0.01~10s~(-1)条件下的流变行为,并建立了复合变形的应力-应变本构方程和加工图。结果表明,705和706铝合金在压缩复合变形过程中,其流变应力随着变形温度的升高而减小,随应变速率的增加而增大,流变应力达到峰值后曲线呈现稳态流变特征,具有正应变速率敏感性。复合变形的平均变形激活能为147.2kJ/mol,与单一的Al-7.0Zn-2.9Mg合金相比更容易发生塑性变形。不同应变量的加工图显示两种合金在高温压缩复合变形时安全区域主要存在于高温、中等应变量和低应变速率的条件下,较合适的加工条件是道次应变量为0.2~0.4,变形温度为723~748K,应变速率为0.1~0.01s~(-1)。  相似文献   

9.
以5A02铝合金冷轧板材为研究对象,通过单向拉伸试验和金相试验对不同变形温度、应变速率条件下5A02铝合金的塑性性能进行分析,并且借助试验数据和Zener-Hollomon参数模型,对高温条件下5A02铝合金的本构模型进行研究。结果表明:5A02铝合金在高温条件下变形时,应变速率和变形温度对延伸率的影响很大。在应变速率为0.01、0.001、0.0005和0.0001s~(-1)条件下,当变形温度大于250℃时,5A02铝合金的延伸率大于100%。当变形温度为150~250℃时,5A02铝合金的真实应力-应变曲线属于动态回复型,而当变形温度大于250℃时,流变应力曲线存在明显的软化现象。  相似文献   

10.
采用DIL805A/T热模拟试验机研究了60Si2CrVAT弹簧钢在温度为900~1050℃、应变速率为0.001~1 s~(-1)条件下的高温变形行为。结果表明,在相同应变速率下,流变应力随变形温度的升高而降低,在同一温度下,流变应力随应变速率的增大而升高。使用修正的Arrhenius模型来描述60Si2Cr VAT弹簧钢高温拉伸变形时的本构方程,计算出变形激活能Q=331.21k J/mol,材料常数为A=3.176×10~(12),n=4.0643,a=0.01079 MPa~(-1),得到了高温拉伸本构方程。  相似文献   

11.
研究了热挤压态Mg-3Al-3Zn-1Ti-0.6RE镁合金的高温拉伸变形行为和微观组织演变,分析了该合金在温度为623~723 K,应变速率为10~(-4)~10~(-2) s~(-1)条件下的流变应力随温度和应变速率的变化,归纳了温度、应变速率与流变应力的关系。研究结果表明:温度和应变速率是影响流变应力的主要因素,在变形过程中,流变应力随变形温度的升高和应变速率的降低而减小。在本实验条件下,该合金的变形本构方程可用双曲正弦函数ε=A[sinh(ɑσ)]~nexp(-Q/RT)来描述,应力指数n=3.286,激活能Q=238 k J/mol,表明该合金的高温塑性变形机制主要是位错滑移和攀移。  相似文献   

12.
采用UTM5000电子万能拉伸试验机,在变形温度573~648 K和应变速率0.001~0.1 s~(-1)条件下对2060-T8铝锂合金进行等温恒应变速率拉伸试验,得到其在变形过程中的真应力-真应变曲线,建立了基于应变补偿和修正项的温热变形本构方程。通过扫描电子显微镜(SEM)分析拉伸断口,对2060-T8铝锂合金的温热变形行为进行研究。结果表明:2060-T8铝锂合金对变形温度和应变速率具有较高的敏感性,流变应力曲线呈现出应变硬化和流变软化的特征,随着变形温度的升高和应变速率的降低,稳态流变特征逐渐消失,其在温热变形条件下的断裂形式为韧性断裂。修正的本构模型与实验值吻合度较高,可以为2060-T8铝锂合金温热变形的有限元模拟提供前提条件。  相似文献   

13.
在573~723 K、0.001~1 s~(-1)变形条件下研究均匀化态Al-3.2Mg-0.4Er铝合金的热变形行为。基于热压缩实验结果,构建综合考虑应变速率、变形温度和应变的唯象本构方程,同时建立再结晶动力学方程和塑性加工图。结果显示:所构建的本构模型能准确地预测Al-3.2Mg-0.4Er铝合金在热变形过程中的流变应力。再结晶组织的演变和再结晶体积分数可以由所建立的动力学方程以S曲线形式进行描述。此外,构建了合金在不同应变下的热塑性加工图,得到均匀化态Al-3.2Mg-0.4Er铝合金的较优加工条件为573 K、0.001 s~(-1)及723 K、0.001~1 s~(-1).  相似文献   

14.
在Gleeble-3500热模拟试验机上进行了7050铝合金变形温度573~723 K、应变速率0.001~1 s~(-1)的等温热压缩试验,并对合金的热变形行为进行了研究。从流动应力曲线可以发现,流动应力随变形温度的增加而降低,且随应变速率的增加而增加,存在明显的高温软化和应变速率强化现象。在流动应力曲线基础上,基于Malas准则建立了7050铝合金的3D热加工图,确定出合适的热加工区域为变形温度700~723 K、应变速率0.001~0.006 s~(-1)。  相似文献   

15.
通过热拉伸实验,研究了在变形温度473~673 K、应变率0.001~0.1 s~(-1)条件下铝合金2219-O流变应力的变化规律,并建立材料本构关系。实验结果表明:在所研究的温度和应变率范围内,铝合金2219-O流变应力受到加工硬化和动态回复软化机制的综合影响,随着温度的升高,两种机制逐渐达到平衡状态。该材料属于正应变率敏感材料,流变应力随应变率的增加而增大,随温度的增加而降低。基于Hollomen模型,通过考虑应变、应变率和温度之间的耦合效应,建立了中高温下铝合金2219-O材料本构模型。流变应力的预测值与实验值对比表明该模型能够准确地反映铝合金2219-O热拉伸流变行为。  相似文献   

16.
对航空发动机用新型镍基高温合金GH3230在不同温度和应变速率下进行了高温拉伸-断裂试验,分析了应变速率和温度对该合金高温力学性能的影响。结果表明,随着应变速率的增加和温度的下降,合金的塑性流动应力有所提高,加工硬化指数n下降。从流变应力、应变速率和温度的相关性,得到应变速率敏感系数m是一个独立于温度的常量,并计算出GH3230合金的变形激活能Q=441kJ/mol。GH3230合金的热变形温度在1273 K左右时,合金在变形过程中能够充分再结晶,并得到晶粒细小、均匀的组织。SEM断口分析表明GH3230合金在高温下(1144~1273 K)应变率范围为10~(-3)~10~(-1)s~(-1)时的拉伸断裂都是由损伤引起的韧性断裂,且温度对断口形貌影响不大,但应变速率增大会使韧窝尺寸和深浅变小。  相似文献   

17.
对7A09半连续铸造铝合金进行了热模拟试验,研究了该合金在300、350、400℃,应变速率0.01、0.1、1、5 s~(-1),变形量50%条件下的流变行为。结果表明:该合金在变形温度300℃并且应变速率0.01 s~(-1)时具有明显的峰值应力,应力-应变曲线具有加工硬化、应变软化和稳态流变三个阶段;变形温度达到400℃时,曲线无明显峰值应力。通过计算求得应力水平参数α、应力指数n、变形激活能Q和结构因子A的具体值。应变速率和变形温度对于合金流变应力的影响可用Arrhenius方程和包含Zener-Hollomom参数的关系式表示。热加工图表明该合金具有较低的能量耗散率,高温变形的主要软化机制为动态回复。  相似文献   

18.
6061铝合金热变形行为的研究   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟实验机研究了6061铝合金在变形温度573~773 K、应变速率0.01~2 s-1、最大变形程度45%条件下的高温压缩变形行为,分析了合金在高温变形过程中流变应力与应变速率和变形温度之间的关系,建立了6061铝合金高温变形的本构关系.结果表明:合金的流变应力随变形温度的升高而降低,随应变速率的增大而增大;试验条件下,该合金的流变行为可用Zener-Hollomon参数来描述,变形激活能为236.858 kJ/mol,应力指数为8.926.  相似文献   

19.
采用Gleeble-3500热模拟试验机对6061铝合金进行等温热压缩试验,研究变形温度为300~450℃、应变速率为0.01~10s-1、压缩量为60%条件下合金的热变形特性,分析其高温流变应力行为,依据动态材料模型建立热加工图并结合热变形组织分析6061铝合金的热变形机制。结果表明,6061铝合金流变应力随变形温度的升高和应变速率的降低而下降,其高温软化机制以动态回复为主;合金在高应变速率下普遍存在流变失稳,最佳热加工区间变形温度为430~450℃,应变速率为0.01~0.05 s~(-1),该工艺范围内合金出现了部分动态再结晶组织。  相似文献   

20.
当温度为300-450℃,应变速率为0.001-0.1S^-1时,在WDW-E200拉伸机上采用单向拉伸实验研究喷射沉积7075A1/SIC。复合材料板材的高温变形行为;分析板材的变形激活能以及流变应力、变形温度和应变速率之间的关系。结果表明:随着变形温度升高和应变速率降低,7075AI/SiCp复合材料板材拉伸流变应力减小;其最大拉伸断裂伸长率由5.03%增加到71.07%;7075A1/SICp复合材料板材应变速率敏感系数的最大值仅为0.22,在温度为623、673和723K时其变形激活能分别为380.49、323.42和434.S6kJ/mol,均高于铝的晶格自扩散激活能(142kJ/mol)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号