首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charge carrier transport in organic electronic devices is influenced by the crystalline microstructure and morphology of the organic semiconductor film. Evaporation behavior during drying plays a vital role in controlling the film morphology and the distribution of solute in inkjet‐printed films. On p. 229, Kilwon Cho and co‐workers demonstrate the influence of the evaporation‐induced flow in a single droplet on the crystalline microstructure and film morphology of inkjet‐printed 6,13‐bis((triisopropylsilylethynyl) pentacene. The results provide an excellent method for direct‐write fabrication of high‐performance organic electronics. We have demonstrated the influence of evaporation‐induced flow in a single droplet on the crystalline microstructure and film morphology of an ink‐jet‐printed organic semiconductor, 6,13‐bis((triisopropylsilylethynyl) pentacene (TIPS_PEN), by varying the composition of the solvent mixture. The ringlike deposits induced by outward convective flow in the droplets have a randomly oriented crystalline structure. The addition of dichlorobenzene as an evaporation control agent results in a homogeneous film morphology due to slow evaporation, but the molecular orientation of the film is undesirable in that it is similar to that of the ring‐deposited films. However, self‐aligned TIPS_PEN crystals with highly ordered crystalline structures were successfully produced when dodecane was added. Dodecane has a high boiling point and a low surface tension, and its addition to the solvent results in a recirculation flow in the droplets that is induced by a Marangoni flow (surface‐tension‐driven flow), which arises during the drying processes in the direction opposite to the convective flow. The field‐effect transistors fabricated with these self‐aligned crystals via ink‐jet printing exhibit significantly improved performance with an average effective field‐effect mobility of 0.12 cm2 V–1 s–1. These results demonstrate that with the choice of appropriate solvent ink‐jet printing is an excellent method for the production of organic semiconductor films with uniform morphology and desired molecular orientation for the direct‐write fabrication of high‐performance organic electronics.  相似文献   

2.
3.
In this study, pentacene thin‐film transistors (TFTs) operating at low voltages with high mobilities and low leakage currents are successfully fabricated by the surface modification of the CeO2–SiO2 gate dielectrics. The surface of the gate dielectric plays a crucial role in determining the performance and electrical reliability of the pentacene TFTs. Nearly hysteresis‐free transistors are obtained by passivating the devices with appropriate polymeric dielectrics. After coating with poly(4‐vinylphenol) (PVP), the reduced roughness of the surface induces the formation of uniform and large pentacene grains; moreover, –OH groups on CeO2–SiO2 are terminated by C6H5, resulting in the formation of a more hydrophobic surface. Enhanced pentacene quality and reduced hysteresis is observed in current–voltage (I–V) measurements of the PVP‐coated pentacene TFTs. Since grain boundaries and –OH groups are believed to act as electron traps, an OH‐free and smooth gate dielectric leads to a low trap density at the interface between the pentacene and the gate dielectric. The realization of electrically stable devices that can be operated at low voltages makes the OTFTs excellent candidates for future flexible displays and electronics applications.  相似文献   

4.
Ink‐jet printed metal nanoparticle films have been shown to anneal at high temperatures (above 500 °C) to highly conductive metal films on glass or ceramic substrates, but they suffer from cracking and inadequate substrate adhesion. Here, we report printable conductive materials, with added nanosized glass frit that can be annealed at 500 °C to form a crack‐free dense microstructure that adheres well to glass substrates. This overcomes the previous challenges while still retaining the desired high film conductivity. Controlling the particle characteristics and dispersion behavior plays an important role in successfully incorporating the glass frit into the conductive inks.  相似文献   

5.
We present experimental observations of line‐narrowing of the photoluminescence in close‐packed thin films of CdSe nanocrystals with epitaxial ZnS shells, under excitation from a pulsed source of 100 ps duration, both at 77 K and at room temperature (RT). Atomic force microscopy (AFM) of these films reveals them to be optically flat to less than 1 % of the emission wavelength and we propose that waveguiding and amplified spontaneous emission is the principal mechanism for line‐narrowing. We observe that line‐narrowing is assisted by the use of films with a bimodal distribution of nanocrystal sizes, where the excited state population is concentrated on the larger nanocrystals due to energy transfer.  相似文献   

6.
Oxide nanoparticles-based process is one of the successful approaches to prepare CuIn1−xGaxSe2 and CuInSe2, which has achieved high power conversion efficiencies. In order to transform the oxides into selenide, the oxide precursors were annealed with solid Se which was used as a source of Se vapor rather than highly toxic and explosive H2Se and H2 gas. However, the In2O3 phase frequently remains in the final films after selenization because of the high stability of In2O3 and the poor activity of Se during selenization. So, in order to eliminate the impurity phase of In2O3 and improve the morphology of the final thin films, the oxide precursors were sequentially sulfurized and selenized. The CuIn(S, Se)2 (CISSe) thin films which have pure phase, improved crystallinity, larger grain size and optimized band gap were obtained in this work.  相似文献   

7.
8.
The fabrication and implementation of artificially intelligent sensor arrays has faced serious technical and/or cost‐effectiveness challenges. Here, a new printing method is presented to produce a fully functional array of sensors based on monolayer‐capped gold nanoparticles. The proposed printing technique is based on the so‐called self‐propelled antipinning ink droplet, from which evaporative deposition takes place along the path of motion. By applying actuating forces, different deposition line patterns with different thicknesses and morphology from a single droplet are generated. The functionality of the produced sensors is demonstrated by their ability to detect different representative volatile organic compounds (VOCs) belonging to different chemical families, including alcohols, alkanes, ethers, and aromatics, and under extremely different humidity levels resembling those encountered in real‐world conditions. The results show that the sensors exhibit ultrasensitive sensing features, with an ability to detect and differentiate between different VOCs at low ppb levels. Additionally, the results show that the sensors are able to accurately predict VOC concentrations, viz. enable quantification capabilities, while nevertheless being inexpensive, do not need complicated and expensive printing equipment and prepatterning processes, allow low voltage operation, and provide a platform for multifunctional applications.  相似文献   

9.
Hydrogels with controlled surface patterns are useful for a range of applications, including in microdevices, sensors, coatings, and adhesives. In this work, a simple and robust method to generate a wide range of osmotically driven surface patterns, including random, lamellar, peanut, and hexagonal structures is developed. This method does not require the use of organic solvents for swelling, pre‐patterning of the film surface, or coating of a second layer on the gel. The patterns are fabricated by exposing a photocurable formulation to light while open to air and then swelling, using oxygen inhibition of the radical polymerization at the surface to create a gradient of crosslinking with depth, which was confirmed by measuring the double bond conversion at the surface, surface mechanics, and molecule diffusion into the network. The modulus gradient, and hence osmotic pressure, is controlled by the crosslinker concentration, and the characteristic size of the patterns is determined by the initial film thickness. The patterns are stable in both swollen and dry states, creating a versatile approach that is useful for diverse polymers to create complex patterns with long‐range order.  相似文献   

10.
We present the first detailed report that directly correlates the reduced contact resistance in organic thin‐film transistors (TFTs) with fundamental structural and morphological characterization at the organic semiconductor/conducting polymer interface. Specifically, the pentacene grains are similar in size and continuous across the channel/electrode interface in bottom‐contact TFTs with polyaniline (PANI) electrodes. On a molecular level, the fused rings of pentacene are oriented perpendicular to the surface both in the channel and on PANI. Accordingly, the contact resistance is small in such devices. In TFTs with gold electrodes, however, the pentacene grains are different in size and are discontinuous across the channel/electrode interface. Further, the fused rings of pentacene are oriented perpendicular to the channel surface and parallel to the gold surface. Such differences across the channel/electrode interface lead to structural and electronic disorder, which manifests itself as a significantly larger contact resistance in devices with gold electrodes.  相似文献   

11.
We report on electric‐field‐induced irreversible structural modifications in pentacene thin films after long‐term operation of organic field‐effect transistor (OFET) devices. Micro‐Raman spectroscopy allows for the analysis of the microstructural modifications of pentacene in the small active channel of OFET during device operation. The results suggest that the herringbone packing of pentacene molecules in a solid film is affected by an external electric field, particularly the source‐to‐drain field that parallels the a–b lattice plane. The analysis of vibrational frequency and Davydov splitting in the Raman spectra reveals a singular behavior suggesting a reduced separation distance between pentacene molecules after long‐term operations and, thus, large intermolecular interactions. These results provide evidence for improved OFET performance after long‐term operation, related to the microstructures of organic semiconductors. It is known that the application of large electric fields alters the semiconductor properties of the material owing to the generation of defects and the trapping of charges. However, we first suggest that large electric fields may alter the molecular geometry and further induce structural phase transitions in the pentacene films. These results provide a basis for understanding the improved electronic properties in test devices after long‐term operations, including enhanced field‐effect mobility, improved on/off current ratio, sharp sub‐threshold swing, and a slower decay rate in the output drain current. In addition, the effects of source‐to‐drain electric field, gate electric field, current and charge carriers, and thermal annealing on the pentacene films during OFET operations are discussed.  相似文献   

12.
Measuring the anisotropy of the field‐effect mobility provides insight into the correlation between molecular packing and charge transport in organic semiconductor materials. Single‐crystal field‐effect transistors are ideal tools to study intrinsic charge transport because of their high crystalline order and chemical purity. The anisotropy of the field effect mobility in organic single crystals has previously been studied by lamination of macroscopically large single crystals onto device substrates. Here, a technique is presented that allows probing of the mobility anisotropy even though only small crystals are available. Crystals of a soluble oligothiophene derivative are grown in bromobenzene and drop‐cast onto substrates containing arrays of bottom‐contact gold electrodes. Mobility anisotropy curves are recorded by measuring numerous single crystal transistor devices. Surprisingly, two mobility maxima occur at azimuths corresponding to both axes of the rectangular cyclohexyl‐substituted quaterthiophene (CH4T) in‐plane unit cell, in contrast to the expected tensorial behavior of the field effect mobility.  相似文献   

13.
The effects of anode/active layer interface modification in bulk‐heterojunction organic photovoltaic (OPV) cells is investigated using poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and/or a hole‐transporting/electron‐blocking blend of 4,4′‐bis[(p‐trichlorosilylpropylphenyl)‐phenylamino]biphenyl (TPDSi2) and poly[9,9‐dioctylfluorene‐coN‐[4‐(3‐methylpropyl)]‐diphenylamine] (TFB) as interfacial layers (IFLs). Current–voltage data in the dark and AM1.5G light show that the TPDSi2:TFB IFL yields MDMO‐PPV:PCBM OPVs with substantially increased open‐circuit voltage (Voc), power conversion efficiency, and thermal stability versus devices having no IFL or PEDOT:PSS. Using PEDOT:PSS and TPDSi2:TFB together in the same cell greatly reduces dark current and produces the highest Voc (0.91 V) by combining the electron‐blocking effects of both layers. ITO anode pre‐treatment was investigated by X‐ray photoelectron spectroscopy to understand why oxygen plasma, UV ozone, and solvent cleaning markedly affect cell response in combination with each IFL. O2 plasma and UV ozone treatment most effectively clean the ITO surface and are found most effective in preparing the surface for PEDOT:PSS deposition; UV ozone produces optimum solar cells with the TPDSi2:TFB IFL. Solvent cleaning leaves significant residual carbon contamination on the ITO and is best followed by O2 plasma or UV ozone treatment.  相似文献   

14.
The fabrication of robust biomolecule microarrays by reactive microcontact printing (μCP) on spin‐coated thin films of poly(N‐hydroxysuccinimidyl methacrylate) (PNHSMA) on oxidized silicon and glass is described. The approach combines the advantages of activated polymer thin films as coupling layers, characterized by high reactivity and high molecular loading, with the versatility and flexibility of soft lithography. The transfer of amino end‐functionalized poly(ethylene glycol) (PEG) from oxidized poly(dimethylsiloxane) elastomer stamps to PNHSMA films is shown by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, fluorescence microscopy, and ellipsometry measurements to result in covalent coupling and identical grafting densities, as found previously for coupling from solution. The PEG‐protected areas effectively inhibit the adsorption of fluoresceinamine, bovine serum albumin, as well as 25‐mer DNA, while the unreacted N‐hydroxysuccinimidyl methacrylate ester groups retain their reactivity towards primary amino groups. Biomolecule microarrays have been thus conveniently fabricated in a two‐step procedure. The hybridization of target DNA to immobilized probe DNA in micropatterns proves the concept of reactive μCP on activated polymer films for obtaining robust platforms for biomolecule immobilization and screening.  相似文献   

15.
The use of solvent‐vapor annealing (SVA) to form millimeter‐long crystalline fibers, having a sub‐micrometer cross section, on various solid substrates is described. Thin films of a perylene‐bis(dicarboximide) (PDI) derivative, with branched alkyl chains, prepared from solution exhibit hundreds of nanometer‐sized PDI needles. Upon exposure to the vapors of a chosen solvent, tetrahydrofuran (THF), the needles re‐organize into long fibers that have a remarkably high aspect ratio, exceeding 103. Time‐ and space‐resolved mapping with optical microscopy allows the self‐assembly mechanism to be unravelled; the mechanism is found to be a nucleation‐governed growth, which complies with an Avrami‐type of mechanism. SVA is found to lead to self‐assembly featuring i) long‐range order (up to the millimeter scale), ii) reversible characteristics, as demonstrated through a series of assembly and disassembly steps, obtained by cycling between THF and CHCl3 as solvents, iii) remarkably high mass transport because the PDI molecular motion is found to occur at least over hundreds of micrometers. Such a detailed understanding of the growth process is fundamental to control the formation of self‐assembled architectures with pre‐programmed structures and physical properties. The versatility of the SVA approach is proved by its successful application using different substrates and solvents. Kelvin probe force microscopy reveals that the highly regular and thermodynamically stable fibers of PDI obtained by SVA exhibit a greater electron‐accepting character than the smaller needles of the drop‐cast films. The giant fibers can be grown in situ in the gap between microscopic electrodes supported on SiOx, paving the way towards the application of SVA in micro‐ and nanoelectronics.  相似文献   

16.
Substrate clamping and inter‐domain pinning limit movement of non‐180° domain walls in ferroelectric epitaxial films thereby reducing the resulting piezoelectric response of ferroelectric layers. Our theoretical calculations and experimental studies of the epitaxial PbZrxTi1–xO3 films grown on single crystal SrTiO3 demonstrate that for film compositions near the morphotropic phase boundary it is possible to obtain mobile two‐domain architectures by selecting the appropriate substrate orientation. Transmission electron microscopy, X‐ray diffraction analysis, and piezoelectric force microscopy revealed that the PbZr0.52Ti0.48O3 films grown on (101) SrTiO3 substrates feature self‐assembled two‐domain structures, consisting of two tetragonal domain variants. For these films, the low‐field piezoelectric coefficient measured in the direction normal to the film surface (d33) is 200 pm V–1, which agrees well with the theoretical predictions. Under external AC electric fields of about 30 kV cm–1, the (101) films exhibit reversible longitudinal strains as high as 0.35 %, which correspond to the effective piezoelectric coefficients in the order of 1000 pm V–1 and can be explained by elastic softening of the PbZrxTi1–xO3 ferroelectrics near the morphotropic phase boundary.  相似文献   

17.
Regular polymer patterns are formed from casting a dilute polymer solution on a solid substrate. Dissipative structures, e.g., convection patterns, fingering instabilities, and so on, are formed in the evaporation process of casting polymer films. Controlled production and manufacturing of patterned polymer films can be achieved when the evaporating solution edge, especially the meniscus region on the casting substrate, is formed under controlled casting conditions. In this report, we describe a computer‐controlled apparatus which has two precisely manipulated sliding glass plates. A narrow, thin liquid film of polymer solution with a receding meniscus is continuously supplied from a small gap between two glass plates (one sliding and the other stationary), and a patterned polymer film is subsequently formed on the stationary substrate from the evaporating solution edge. Several types of polymer patterns from various polymers are reproducibly prepared by changing preparation conditions such as sliding speed and polymer concentration.  相似文献   

18.
Excellent crystallinity of material films and atomic control of their surface/interface, sufficient for the realization of their optimal physical properties, are technological premises for modern functional‐device applications. Bi4Ti3O12 and related compounds attract much interest as highly insulating, ferroelectric materials for use in ferroelectric random‐access memories. However, it has been difficult thus far for Bi4Ti3O12 films to satisfy such requirements when formed using vapor‐phase epitaxy, owing to the high volatility of Bi in a vacuum. Here, we demonstrate that flux‐mediated epitaxy is one of the most promising and widely applicable concepts to overcome this inevitable problem. The key point of this process is the appropriate selection of a multi‐component flux system. A combinatorial approach has led to the successful discovery of the novel flux composition of Bi–Cu–O for Bi4Ti3O12 single‐crystal film growth. The perfect single‐crystal nature of the stoichiometric Bi4Ti3O12 film formed has been verified through its giant grain size and electric properties, equivalent to those of bulk single crystals. This demonstration has broad implications, opening up the possibility of preparing stoichiometric single‐crystal oxide films via vapor‐phase epitaxy, even if volatile constituents are required.  相似文献   

19.
We report the self‐assembly and characterization of mesoporous silica thin films with a 3D ordered arrangement of isolated spherical pores. The preparation method was based on solvent‐evaporation induced self‐assembly (EISA), with MTES (CH3–Si(OCH2CH3)3) as the silica precursor and a polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) diblock copolymer as the structure‐directing agent. The synthetic approach was designed to suppress the siloxane condensation rate of the siloxane network, allowing co‐self‐assembly of the silica and the amphiphile, followed by retraction of the PEO chains from the silica matrix and matrix consolidation, to occur unimpeded. The calcined films retained the methyl ligands and exhibited no measurable microporosity, thereby indicating that the 3D‐ordered spherical mesopores are not interconnected. A solvent‐mediated formation mechanism is proposed for the absence of microporosity. Due to their closed porosity and hydrophobicity, the MTES‐based films and MTES‐TEOS (Si(OCH2CH3)4)‐based hybrid films we describe should be promising for applications such as low‐k dielectrics.  相似文献   

20.
The high‐precision deposition of highly crystalline organic semiconductors by inkjet printing is important for the production of printed organic transistors. Herein, a facile nonconventional lithographic patterning technique is developed for fabricating banks with microwell structures by inkjet printing solvent droplets onto a polymer layer, thereby locally dissolving the polymer to form microwells. The semiconductor ink is then inkjet‐printed into the microwells. In addition to confining the inkjet‐printed organic semiconductor droplets, the microwells provide a platform onto which organic semiconductor molecules crystallize during solvent evaporation. When printed onto the hydrophilic microwells, the inkjet‐printed 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS_PEN) molecules undergo self‐organization to form highly ordered crystalline structures as a result of contact line pinning at the top corner of the bank and the outward hydrodynamic flow within the drying droplet. By contrast, small crystallites form with relatively poor molecular ordering in the hydrophobic microwells as a result of depinning of the contact line along the walls of the microwells. Because pinning in the hydrophilic microwells occurred at the top corner of the bank, treating the surfaces of the dielectric layer with a hydrophobic organic layer does not disturb the formation of the highly ordered TIPS_PEN crystals. Transistors fabricated on the hydrophilic microwells and the hydrophobic dielectric layer exhibit the best electrical properties, which is explained by the solvent evaporation and crystallization characteristics of the organic semiconductor droplets in the microwell. These results indicate that this technique is suitable for patterning organic semiconductor deposits on large‐area flexible substrates for the direct‐write fabrication of high‐performance organic transistors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号