首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过Gleeble-3800热力模拟试验机采用高温轴向压缩试验,在温度为850~1150℃,应变速率为0.01~10 s~(-1)的条件下,对一种碳化物和金属间化合物复合析出硬化超高强度20Co14Ni12Cr2Mo Al钢的高温变形及动态再结晶行为进行了研究。结果表明,试验钢流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;随着变形速率的提高,其发生完全动态再结晶的温度也逐渐升高。当变形速率为10 s~(-1)时,其变形温度高于1050℃,才能发生完全动态再结晶;完全动态再结晶晶粒的平均尺寸随着Zener-Hollomon参数的增加而减小,试验钢完全动态再结晶晶粒尺寸与Z参数之间的关系模型为:D_(DRX)=2.644×10~4·Z~(-0.119),并建立了该钢的动态再结晶状态图;试验钢的热变形激活能Q值为449.20 k J/mol。  相似文献   

2.
通过Gleeble-3200热模拟机对EA4T钢进行热压缩实验,研究了应变速率为0.01~10 s~(-1),变形温度为950~1150℃条件下,EA4T钢的热变形行为和组织演变。分析其流变曲线发现,EA4T钢的峰值应力随着温度增大而减小,随着应变速率增大而增大,得到该材料在高的温度和低的应变速率条件下容易发生动态再结晶。基于Arrhenius双曲正弦方程建立了EA4T钢的热变形本构方程;运用数值计算方法,确定了EA4T钢的峰值激活能和稳态激活能分别为385.4和395.4 kJ·mol~(-1);观察温度以及应变速率对试验钢组织演变的影响发现,动态再结晶晶粒尺寸随着变形温度的增加而增大,随着应变速率的增加而减小;通过测量晶粒度,获得动态再结晶晶粒尺寸和Z参数的关系式。  相似文献   

3.
《塑性工程学报》2016,(2):130-135
采用Gleeble-3800热模拟试验机,在温度850℃~1200℃、应变速率0.001s~(-1)~10s~(-1)下进行热压缩实验,研究300M高强钢的热变形行为。根据双曲正弦函数,分析全应变条件下流动应力与Z参数间的关系,得到300M高强钢的变形激活能Q及参数A、n、α的值,建立全应变本构方程。基于动态材料模型,建立300M高强钢的热加工图,并讨论了300M钢组织演化规律。结果表明,考虑应变补偿的本构方程,在实验条件内计算的流动应力与实验所测结果吻合度较高;随变形温度的升高及应变速率的减小,300M钢的奥氏体晶粒尺寸增加;变形温度900℃~1 200℃、应变速率0.001s~(-1)~0.1s~(-1)是300M高强钢较佳的热加工工艺范围。  相似文献   

4.
通过Gleeble-3800热模拟试验机对25Cr3Mo3NiNbZr钢在变形温度1000~1250℃和变形速率0.001~10 s~(-1)下进行了高温压缩实验,研究了钢的热变形行为,得到了应力-应变曲线,并建立了流动应力本构方程和热加工图,同时观察了变形后的组织。结果表明,25Cr3Mo3NiNbZr钢在热压缩过程中的变形行为可用双曲正弦函数来描述,其平均变形激活能为415.6 kJ/mol。通过热加工图可以直观地看出热变形失稳区,并且获得了易于再结晶的参数范围,即变形温度为1050~1125℃,应变速率为0.001~0.01 s~(-1)。当应变速率为1 s~(-1)且变形温度从1000℃升至1250℃时,晶粒尺寸逐渐增加;当温度为1200℃且应变速率从0.001 s~(-1)增至10 s~(-1)时,晶粒尺寸逐渐减小。  相似文献   

5.
对Ti-25V-15Cr-0.2Si阻燃钛合金在温度为950~1100℃,应变速率为0.001~1 s~(-1)条件下进行热压缩试验,研究了该合金在β相区变形时的动态再结晶行为。结果表明,该合金的热变形机制主要是由动态再结晶支配的,而动态再结晶新晶粒主要是通过弓弯形核机制来形成的。当应变速率降低和变形温度升高时动态再结晶易于发生;当应变速率为0.01~0.1 s~(-1),变形温度为950~1050℃时,动态再结晶使晶粒细化;当变形温度高于1100℃,应变速率低于0.001 s~(-1)时,动态再结晶晶粒粗化。为了确定在不同变形条件下的动态再结晶体积分数和动态再结晶晶粒尺寸,分别建立了该合金动态再结晶动力学和动态再结晶晶粒尺寸预测模型。  相似文献   

6.
为了研究中碳含钒微合金非调质钢的热变形行为,在变形温度900~1100℃C和应变速率0.01~10 s~(-1)下通过Gleeble-3500热模拟试验机进行了单道次热压缩试验。结果表明:试验钢因热变形而产生加工硬化,使应力得到提升,应力会随着应变速率的提高和热加工温度的降低而有明显的提升,峰值应力随之升高;通过计算得到试验钢的热变形激活能为285.242kJ/mol,并由此得到了试验钢的本构方程;热压缩过程中试验钢发生了动态再结晶,当发生完全动态再结晶时,应变速率较低和温度较高的试样其晶粒尺寸要比应变速率高和温度较低的试样的晶粒尺寸大。  相似文献   

7.
1Cr20Co6Ni2WMoV钢热变形行为研究   总被引:1,自引:0,他引:1  
文章采用Gleeble-2000热模拟试验机对1Cr20Co6Ni2WMoV热强钢的热变形行为进行研究。变形温度为950℃,1000℃,1050℃,1100℃,1160℃,变形速率为0.01s~(-1),0.1s~(-1),1s~(-1),10s~(-1)。结果表明.1Cr20Co6Ni2WMoV钢在低应变速率热压缩变形过程中发生明显的动态再结晶;当应变速率大于10s~(-1)时,只发生动态回复。动态再结晶晶粒随变形温度降低,应变速率升高而减小。随应变速率的提高,峰值应力和峰值应变均升高。  相似文献   

8.
对GH4720Li合金在1080~1180℃、应变速率为0.01~10 s~(-1)条件下的单道次压缩变形行为进行了研究。利用压缩实验的应力-应变关系曲线,计算了变形条件下的热变形激活能,建立了相应的本构方程和热加工图。结果表明:动态再结晶是GH4720Li合金的主要软化机制;合金在1120~1180℃、应变速率在0.1~1 s~(-1)、真应变0.7时实现完全动态再结晶,最佳变形温度为1120~1140℃;γ′相的析出行为引起峰值应力和热变形激活能显著变化;热变形激活能在1160℃,达到最小值602 k J/mol;应变速率达到1 s~(-1)以上,合金出现失稳现象。  相似文献   

9.
采用Gleeble-3500热模拟试验机对锻态Ni_(55)Ti_(45)合金进行等温恒应变速率压缩实验,研究了该合金在变形温度为650~850℃、应变速率为0.01~1 s~(-1)范围内的高温变形特性,并分析其变形机制。结果表明,应力-应变曲线呈"应变软化"型,热变形激活能为317.304 k J/mol,根据双曲正弦函数建立了峰值流变应力本构方程。微观组织观察表明,在650℃、1 s~(-1)和700℃、1 s~(-1)时发生了局部塑性流动的失稳变形,主要由变形热效应导致。高温、低应变速率利于动态再结晶的发生,但动态再结晶晶粒尺寸更大。动态再结晶形核机制以晶界弓出机制为主,同时伴随有少量的PSN机制。  相似文献   

10.
采用Gleeble-3500热模拟试验机对65Mn钢进行热压缩试验,变形温度850~1150℃、应变速率0.02~20 s~(-1),最大真应变1.0,研究材料在上述试验条件下的动态再结晶行为,以及变形条件对再结晶晶粒尺寸的影响。结果表明:试验钢的真应力-真应变曲线在高温、低应变速率条件下出现明显峰值,随着温度的升高和应变速率的降低,临界应变变小,有利于动态再结晶发生;奥氏体再结晶晶粒尺寸与变形参数相关,应变速率降低,再结晶晶粒尺寸增大;变形温度降低,有利于再结晶晶粒尺寸细化。  相似文献   

11.
利用Gleeble-3800热模拟试验机研究了一种新型超高强度不锈钢在变形温度850~1150 ℃,应变速率0.01~10 s-1条件下的热压缩变形行为,建立了钢的热变形方程及动态再结晶晶粒的尺寸模型。结果表明,变形过程中,变形温度降低和应变速率增加都会使钢的高温流变应力增加。应变速率相同时,随着变形温度的升高,动态再结晶程度逐渐增加;而当变形温度相同时,随着应变速率的降低,动态再结晶晶粒发生长大。试验钢的变形激活能为452.02 kJ/mol,热变形方程为:=6.93309×1016[sinh(0.00467σ)] 7.2154exp(),动态再结晶临界应变εc与形变温度和应变速率的关系为:εc=8.89×10-3(exp())0.07328,动态再结晶晶粒尺寸模型为DDRX=947.28×Z-0.123。  相似文献   

12.
根据Gleeble-3500热模拟试验机测量30CrNi3MoV钢的真应力-真应变曲线,系统研究了应变速率为0.01、0.1 s-1时钢材的动态再结晶行为,并构建了其动态再结晶模型。结果表明:30CrNi3MoV钢在高温小应变速率下更容易发生动态再结晶,其热变形激活能为328.2 kJ/mol;通过加工硬化率随流变应力变化曲线(θ-σ)的拐点确定临界应变,可得动态再结晶临界应变方程为εc=0.001 22Z0.175;构建的动态再结晶体积分数及其平均晶粒尺寸模型能够较好地预测试验钢的动态再结晶体积分数及其晶粒尺寸;当应变速率为0.1 s-1、变形温度为1050 ℃时,试验钢的晶粒最细小、均匀,平均晶粒尺寸约为19.9 μm。  相似文献   

13.
采用Gleeble3800热模拟试验机对16Cr超级马氏体不锈钢进行高温热压缩试验,测得其高温流变应力曲线。通过双曲正弦模型构建了试验钢的热变形本构方程,获得了该钢的热变形表观激活能Q为533.018 k J/mol。根据材料动态模型绘制试验钢热加工图,结合高温变形后显微组织,确定可行热加工工艺参数:变形温度为925~1025℃,应变速率为0.01~0.1 s~(-1);变形温度为1050~1100℃,应变速率为0.1~10 s~(-1)。此时试验钢组织发生了完全动态再结晶,晶粒明显细化,且对应的能量耗散效率较高。  相似文献   

14.
文章利用Gleeble-1500热模拟试验机研究了SUPER82B硬线钢在温度为900℃~1050℃、变形速率为0.10s-1~10s-1条件下的热变形行为。通过奥氏体再结晶动力学回归计算了SUPER82B硬线钢的动态再结晶激活能、峰值应力σm与变形温度、应变速率之间的关系,动态再结晶临界应变εc和动态再结晶完成应变εs与ln(Z)的计算模型,给出了反映该钢动态再结晶进行过程的动态再结晶状态图等,为合理预报和控制SUPER82B硬线钢的组织和性能提供基本依据。  相似文献   

15.
利用Gleeble-3800热模拟试验机对试验钢在950~1100 ℃,应变速率为0.1~5.0 s-1,最大应变量为60%的条件下进行了热压缩模拟试验。结果表明:高变形温度、低应变速率和大变形量有利于动态再结晶,试验在1050 ℃、变形量60%、变形速率1 s-1条件下得到圆整均匀再结晶晶粒,平均晶粒尺寸为14.84 μm;推演出低碳Ti-Mo微合金马氏体钢的形变激活能为462.8 kJ/mol及Z参数与动态再结晶变形条件的关系;建立起试验钢动态再结晶临界应变公式εc=0.3729Z0.3496。  相似文献   

16.
采用Gleeble-3800热力模拟试验机在温度为1123~1423 K、应变速率为0.001~10 s~(-1)的条件下对2101双相不锈钢进行了热压缩实验,以研究热变形参数对其热加工行为的影响规律。结果表明,相同应变速率下,随温度升高,流变曲线由动态再结晶向动态回复转变。变形速率由0.001 s~(-1)增至0.01和0.1 s~(-1)提高了动态再结晶温度范围,而1和10 s~(-1)的较高应变速率不利于动态再结晶。在应变速率为0.001~0.1s~(-1)、变形温度为1253~1323 K时,峰值应力所对应的应变越小,奥氏体动态再结晶越容易发生,有利于等轴状再结晶组织形成。低应变速率下,变形温度升高使奥氏体再结晶晶粒长大,且Zener-Hollomon参数较大时,动态再结晶效果变差与Mn稳定奥氏体能力较Ni弱有关。基于热变形方程计算得到该不锈钢热变形激活能Q=464.49 k J/mol,略高于2205双相不锈钢,并建立了峰值流变应力本构方程。结合不同变形条件下的应变曲线和显微组织,根据热加工图确定了最佳热加工区域为应变速率在0.001~0.1 s~(-1)、变形温度为1220~1350 K,该区域功率耗散系数处于0.40~0.47的较高值,发生了明显奥氏体动态再结晶。  相似文献   

17.
利用Gleeble-3800热模拟试验机,研究了Ni-Cr-Mo-B特厚板钢在900~1150℃、应变速率为0.01~10 s-1、试样工程应变量为70%的热压缩变形行为。基于实验数据,使用回归分析的方法建立了Ni-Cr-Mo-B钢的双曲正弦Arrhenius型本构方程。采用应变硬化速率与应力关系曲线、实验流变曲线准确的确定了表征动态再结晶行为的重要特征参数:临界应力/应变、峰值应力/应变和稳态应力/应变。结果表明:Ni-Cr-Mo-B钢的热变形激活能(Q)为351074 J·mol-1;随着变形温度升高及应变速率减小,即Zener-Hollomon参数(Z)减小,各特征参数减小,有利于动态再结晶发生;临界应力与峰值应力比为0.89,临界应变与峰值应变之比为0.44。此外,基于Z参数,确定了Ni-Cr-Mo-B钢动态再结晶特征参数的数学预测模型。  相似文献   

18.
13Cr超级马氏体不锈钢热压缩变形行为与组织演变   总被引:1,自引:0,他引:1       下载免费PDF全文
通过Gleeble-3500热模拟试验机对13Cr超级马氏体不锈钢进行单道次压缩变形试验,系统研究变形温度在950~1150 ℃、应变速率为0.001~10 s-1条件下的热变形行为。利用双曲正弦模型建立了13Cr超级马氏体不锈钢的流变应力本构方程,求得试验钢的热变形激活能为412 kJ/mol,并基于动态材料模型(DMM)理论绘制了材料的热加工图,得出材料的最佳热变形工艺参数窗口为:变形温度1032~1072 ℃,应变速率0.039~0.087 s-1。组织演变结果表明,试验钢在高变形温度和低应变速率的条件下,容易发生动态再结晶。当应变速率一定时(0.01 s-1),变形温度从950 ℃升到1050 ℃,动态再结晶的体积分数从18.7%升高到60.1%,组织的再结晶程度提高,晶粒均匀细小;当变形温度一定时(1050 ℃),随着应变速率的降低,动态再结晶的晶粒长大粗化。  相似文献   

19.
为研究微合金元素Nb对高碳合金钢动态再结晶行为的影响,利用Gleeble-3500热模拟试验机进行单道次压缩试验,测定了高碳合金钢在变形温度为950~1150 ℃、应变速率为0.01~5 s-1的流变应力曲线,利用Zeiss光学显微镜观察了奥氏体动态再结晶晶粒形态,通过回归计算获得了相应的再结晶激活能,建立了热变形方程。结果表明:较高的变形温度和较低的应变速率有利于含铌高碳合金钢发生动态再结晶;含铌高碳合金钢的动态再结晶晶粒尺寸随着变形温度的升高而增大,当变形温度为1050 ℃时,含铌高碳合金钢已大量出现动态再结晶晶粒;0.040%铌加入到高碳合金钢中,在应变速率为0.1 s-1,变形温度为1150 ℃时推迟了钢的动态再结晶开始时间约2.23 s,动态再结晶形变激活能增加了52.26 kJ/mol。  相似文献   

20.
《塑性工程学报》2016,(5):173-178
利用Gleeble-3500热模拟试验机,在900℃~1 200℃变形温度、0.1s~(~(-1))~10s~(~(-1))应变速率下,针对工业用42CrMo钢锻坯进行变形量为60%的热压缩试验,并对其高温塑性变形行为和金相组织进行研究。基于试验数据,建立了包含变形温度、应变速率及应变的锻态42CrMo钢的高温变形本构方程及微观组织模型。基于动态材料模型建立了其真应变为0.9时的热加工图,在900℃~1000℃、0.1s~(-1)~0.2s~(-1)和1050℃~1125℃、3s~(-1)~10s~(-1)范围下为完全动态再结晶,且晶粒细小。对转向节臂的锤锻成形工艺进行研究,验证了所建立应力及微观组织模型的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号