首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Negatively charged gold nanoparticles (AuNPs) and a polyelectrolyte (PE) have been assembled alternately on a polystyrene (PS) colloid by a layer‐by‐layer (LBL) self‐assembly technique to form three‐dimensional (Au/PAH)4/(PSS/PAH)4 multilayer‐coated PS spheres (Au/PE/PS multilayer spheres). The Au/PE/PS multilayer spheres have been used to modify a boron‐doped diamond (BDD) electrode. Cyclic voltammetry is utilized to investigate the properties of the modified electrode in a 1.0 M KCl solution that contains 5.0 × 10?3 M K3Fe(CN)6, and the result shows a dramatically decreased redox activity compared with the bare BDD electrode. The electrochemical behaviors of dopamine (DA) and ascorbic acid (AA) on the bare and modified BDD electrode are studied. The cyclic voltammetric studies indicate that the negatively charged, three‐dimensional Au/PE/PS multilayer sphere‐modified electrodes show high electrocatalytic activity and promote the oxidation of DA, whereas they inhibit the electrochemical reaction of AA, and can effectively be used to determine DA in the presence of AA with good selectivity. The detection limit of DA is 0.8 × 10?6 M in a linear range from 5 × 10?6 to 100 × 10?6 M in the presence of 1 × 10?3 M AA.  相似文献   

2.
The effective transfer of strong electromagnetic field from the gold core through the coating shell represents the most significant challenge for the applications of plasmonic nanoparticles. This study applies a one‐step arc discharge method to synthesize graphitic carbon‐encapsulated gold nanoparticles (Au@G NPs) functionalized with amino groups uniformly via adding NH3 into He background gas. By tailoring the coating shell into few‐layered graphene, a strong localized surface plasmon resonance (LSPR) absorption band is achieved. The NH3 introduces H radicals to strengthen the LSPR characteristic by etching the coating graphitic shell, as well as provides dissociated NH or NH2 species to functionalize the surfaces with amino groups. With an LSPR‐based colorimetric method, it is demonstrated that trace Cu2+ ions can be detected rapidly with excellent sensitivity (as low as 10 × 10‐9m linearly) and selectivity against other metal ions (Na+, K+, Mg2+, Ca2+, Co2+, Fe2+, Cd2+, Pb2+, and Hg2+ ions) by amino‐functionalized Au@G NPs in water samples.  相似文献   

3.
Amphiphilic resorcinarene‐based multiwalled microtubes, millimetres in diameter and centimetres in length, are generated in water. The thickness of the tube wall approaches 300 nm. Their self‐assembly properties are investigated using transmission electron microscopy, scanning electron microscopy, atomic‐force microscopy, dynamic light scattering, X‐ray diffraction, UV‐vis spectra, and Fourier transform IR techniques. From these studies, the structures critical for the self‐assembly of resorcinarene into microtubes in aqueous media are determined. Furthermore, the study manifests a feasible method that aims to completely change the structure from a microtube to a sheet‐like morphology by selectively eliminating key groups. Subsequently, resorcinarene‐capped water‐soluble gold nanoparticles (AuNPs) are fabricated. By utilizing the obtained microtubes as a template, a gold/organic microtubular composite is successfully prepared.  相似文献   

4.
Gold clusters have been electrodeposited on a boron‐doped diamond (BDD) electrode by scanning the potential from 0.7 V to 0.0 V (vs. 3 M KCl‐Ag/AgCl reference) in a solution of 0.5 mM KAuCl4 and 1.0 M KCl. The cluster‐modified diamond (Au/BDD) electrode has been used to investigate the oxidative properties of dopamine (DA) and ascorbate (AA). The modified diamond electrode shows a higher activity for DA oxidation than AA; the oxidation potential of DA shifted to a less‐positive potential (0.11 V) than that of AA, which oxidized at 0.26 V, and DA possesses a much higher peak current than that of AA. The reversibility of the electrode reaction with DA is significantly improved at the Au/BDD electrode, which results in a large increase in the square‐wave voltammetric peak current, with a detection limit of 0.1 μM in the presence of a large excess of AA. The Au/BDD electrode shows excellent sensitivity and good selectivity for DA detection. A self‐assembled monolayer (SAM) of mercaptoacetic acid on the Au clusters was used to provide an antifouling effect as the negative CO2 groups repulse negative ascorbate and attract positive dopamine in pH 7.4 buffer. After pre‐absorption, the SAM/Au/BDD electrode could detect 1.0 nM DA in a linear range from 10 nM to 10 μM in the presence of 10–4 M AA.  相似文献   

5.
The preparation of modified, catalytically active, functional carbon electrodes and their application to the electrochemical reduction of trinitrotoluene (TNT) is reported. Modification of the electrodes is performed with composites of nanometer‐sized, mesoporous titanium dioxide, which acts as a support containing inserted/deposited nanoparticles of ruthenium, platinum, or gold. These composites are prepared by a novel sonochemical synthesis using simple and low‐cost precursors. Cyclic voltammetry shows that 2,4,6‐trinitrotoluene can be reduced on thus‐modified carbon‐paper electrodes at potentials of around –0.5 V (vs. Ag/AgCl/Cl) in aqueous solutions. Unexpectedly, carbon‐paper electrodes modified with the TiO2/nano‐Pt composites demonstrate a remarkable electrochemical activity toward the reduction of trinitrotoluene. A significant finding is that the two electrode processes—the reduction of TNT and of oxygen—are quite well separated in potential on the modified carbon‐paper electrodes because of selective electrochemical activity of the TiO2/nano‐Pt and TiO2/nano‐Au composites. TiO2/nano‐Ru composites are found to be much less electrochemically active for the detection of TNT compared to the previous two. It was also established that the titanium dioxide support of TiO2/nano‐Pt composites plays a specific role for facilitating the TNT‐ and oxygen‐reduction processes.  相似文献   

6.
Organic electrochemical transistors (OECTs) provide the opportunity to fabricate flexible biosensors with high sensitivity. However, there are currently very few methods to improve the selectivity of OECT sensors. In this work, nitrogen/oxygen‐codoped carbon cloths (NOCCs) are prepared by the carbonization of polyaniline‐wrapped carbon cloths at 750 °C under different atmospheres. The resulting NOCC electrodes exhibit different electrochemical sensing behaviors toward ascorbic acid (AA) and dopamine (DA), enabling the fabrication of OECT sensors with high sensitivity and selectivity that are comparable to the state‐of‐the‐art OECT sensors for AA and DA. The structural characterization and theoretical calculation reveal that the electrochemical sensing behaviors of the NOCC electrodes are closely related to their surface compositions, providing an unprecedented strategy for the design of flexible OECT sensors with high sensitivity and selectivity.  相似文献   

7.
A novel strategy based on titanate nanotubes (TNTs) for developing an electrochemical biosensor is proposed. Stable TNT films are fabricated on glassy carbon (GC) electrodes by a casting technique. Cyclic voltammetry, electrochemical impedance spectrometry, and linear‐sweep voltammetry are used to characterize the TNT membrane‐covered GC electrodes (TNT/GCs). The TNT film is shown to demonstrate selectivity by charge exclusion. The TNT film is also shown to be capable of improving the mass transport to the electrode surface and electron transfer between dopamine (DA) and the electrode. Therefore, DA exhibits a quasireversible electrochemical reaction at the TNT/GC electrode. The voltammetric signal of DA is well resolved from those of ascorbate (AA) and uric acid (UA) at the TNT/GC electrode; therefore, DA can be selectively detected in the presence of a large excess of AA and UA at physiological pH. The linear calibration curve for DA is obtained over the concentration range 0.1–30 μM in a physiological solution that contains 0.1 mM AA and 0.3 mM UA.  相似文献   

8.
A novel and flexible strategy involving hydrothermal transformation of guest‐incorporated zeolite‐seeded mesoporous silica spheres was proposed to prepare guest‐encapsulated hollow zeolite spheres and three‐dimensionally (3D) ordered macroporous zeolite monoliths. The guest species that were pre‐incorporated into the mesopores of silica spheres could be spontaneously encapsulated inside the formed hollow zeolite shells by consuming silica nutrition of the original mesoporous silica cores during the hydrothermal process. A wide range of guest materials with a size ranging from nanometers to micrometers, e.g., Ag and PdO nanoparticles, and mesoporous spheres of carbon and polymer of micrometer size were successfully encapsulated into both discrete hollow zeolite spheres and 3D ordered macroporous zeolite monoliths. Such materials are expected to find a variety of applications such as catalysis, adsorption, and novel microreactors for their special structures with active species inside and zeolitic porous shell outside.  相似文献   

9.
Gold nanoparticles exhibiting absorption in the desirable near‐infrared region are attractive candidates for photothermal therapy (PTT). Furthermore, the construction of one nanoplatform employing gold nanoparticles for complementary therapy is still a great challenge. Here, well‐defined unique hollow silica nanostars with encapsulated gold caps (starlike Au@SiO2) are readily synthesized using a sacrificial template method. Ethanolamine‐functionalized poly(glycidyl methacrylate) (denoted as BUCT‐PGEA) brushes are then grafted controllably from the surface of starlike Au@SiO2 nanoparticles via surface‐initiated atom transfer radical polymerization to produce starlike Au@SiO2‐PGEA. The photothermal effect of gold caps with a cross cavity can be utilized for PTT. The interior hollow feature of starlike Au@SiO2 nanoparticles endows them with excellent drug loading capability for chemotherapy, while the polycationic BUCT‐PGEA brushes on the surface provide good transfection performances for gene therapy, which will overcome the penetration depth limitation of PTT for tumor therapy. Compared with ordinary spherical Au@SiO2‐PGEA counterparts, the starlike Au@SiO2‐PGEA hybrids with sharp horns favor endocytosis, which can contribute to enhanced antitumor effectiveness. The rational integration of photothermal gold caps, hollow nanostars, and polycations through the facile strategy might offer a promising avenue for complementary cancer therapy.  相似文献   

10.
A newly developed electrochemical cell sensor for the determination of K562 leukemia cells using 3‐aminophenylboronic acid (APBA)‐functionalized multiwalled carbon nanotubes (MWCNTs) films is demonstrated. The films are generated by the covalent coupling between the ? NH2 groups in APBA and the ? COOH group in the acid‐oxidized MWCNTs. As a result of the sugar‐specific affinity interactions, the K562 leukemia cells are firmly bound to the APBA‐functionalized MWCNTs film via boronic acid groups. Compared to electropolymerized APBA films, the presence of MWCNTs not only provides abundant boronic acid domains for cell capture, their high electrical conductivity also makes the film suitable for electrochemical sensing applications. The resulting modified electrodes are tested as cell detection sensors. This work presents a promising platform for effective cell capture and constructing reusable cytosensors.  相似文献   

11.
Highly efficient planar heterojunction perovskite solar cells (PVSCs) with dopamine (DA) semiquinone radical modified poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) (DA‐PEDOT:PSS) as a hole transporting layer (HTL) were fabricated. A combination of characterization techniques were employed to investigate the effects of DA doping on the electron donating capability of DA‐PEDOT:PSS, perovskite film quality and charge recombination kinetics in the solar cells. Our study shows that DA doping endows the DA‐PEDOT:PSS‐modified PVSCs with a higher radical content and greater perovskite to HTL charge extraction capability. In addition, the DA doping also improves work function of the HTL, increases perovskite film crystallinity, and the amino and hydroxyl groups in DA can interact with the undercoordinated Pb atoms on the perovskite crystal, reducing charge‐recombination rate and increasing charge‐extraction efficiency. Therefore, the DA‐PEDOT:PSS‐modified solar cells outperform those based on PEDOT:PSS, increasing open‐circuit voltage (V oc) and power conversion efficiency (PCE) to 1.08 V and 18.5%, respectively. Even more importantly, the efficiency of the unencapsulated DA‐PEDOT:PSS‐based PVSCs are well retained with only 20% PCE loss after exposure to air for 250 hours. These in‐depth insights into structure and performance provide clear and novel guidelines for the design of effective HTLs to facilitate the practical application of inverted planar heterojunction PVSCs.  相似文献   

12.
Hollow nanostructures are one of promising sulfur host materials for lithium–sulfur (Li–S) batteries, but the ineffective contact among discrete particles usually generates overall poor electrical conductivity and low volumetric energy density. A new interfused hollow nitrogen‐doped carbon (HNPC) material, derived from imidazolium‐based ionic polymer (ImIP)‐encapsulated zeolitic imidazolate framework‐8 (ZIF‐8), is reported. A novel method for ZIF‐8 disassembly induced by the decomposition of the ImIP shell is proposed. The unique structural superiority gives the resultant electrodes remarkable cycling stability, high rate capability, and large volumetric energy density. A stable reversible discharge capacity over 562 mA h g?1 at 2 C is achieved after prolonged cycling for 800 cycles and the average capacity decay per cycle is as low as 0.035%. The electrochemical performance achieved greatly surpasses that of ZIF‐8‐derived carbon matrices and conventional nitrogen‐doped carbon materials. This proposed methodology opens a new avenue for the design of hollow‐structured carbon nanoarchitectures with target functionalities.  相似文献   

13.
Spermbots are biocompatible hybrid machines that consist of microtubes which are propelled by single spermatozoa and have promising features for powering nano and microdevices. This article presents three approaches on how to improve the performance of such spermbots. First, 20 μm microtubes produce faster spermbots compared to the previously reported 50 μm long microtubes. Furthermore, biofunctionalization by microcontact printing and surface chemistry of biomolecules on the inner tube surface improve the coupling efficiency between sperm cell and microtube, and the addition of caffeine results in a speed boost of the sperm‐driven micromotor.  相似文献   

14.
In this paper a novel technique for the production of aluminosilicate microtubes, which are shown to act as optical cylindrical microresonators, is described. The free‐standing microtubes are fabricated by using vacuum‐assisted wetting and filtration of silica gel through a microchannel glass matrix. The microtubes are studied using scanning electron microscopy, micro‐photoluminescence spectroscopy, and fluorescence lifetime imaging confocal microscopy. In the emission spectra of the microresonators we find very narrow periodic peaks corresponding to the whispering gallery modes of two orthogonal polarizations with quality factors up to 3200. A strong enhancement in photoluminescence decay rates at high excitation power demonstrates the occurrence of amplified spontaneous emission from a single microtube. These microtubes show a large evanescent field extending many micrometers beyond the tube radius. Applications for these novel microresonators will be in the areas of microlasers and microsensors and quantum information processing.  相似文献   

15.
A novel kind of rattle‐type hollow magnetic mesoporous sphere (HMMS) with Fe3O4 particles encapsulated in the cores of mesoporous silica microspheres has been successfully fabricated by sol–gel reactions on hematite particles followed by cavity generation with hydrothermal treatment and H2 reduction. Such a structure has the merits of both enhanced drug‐loading capacity and a significant magnetization strength. The prepared HMMSs realize a relatively high storage capacity up to 302 mg g?1 when ibuprofen is used as a model drug, and the IBU–HMMS system has a sustained‐release property, which follows a Fick's law.  相似文献   

16.
The utilization of iron‐based species (mainly metallic iron, hematite and magnetite) encapsulated into multi‐walled carbon nanotubes (CNTs) as reactants in an electrochemical synthesis is reported for the first time in this work. Prussian blue (PB) is electrosynthesized in a heterogeneous reaction between ferricyanide ions in aqueous solution and the iron‐species encapsulated into CNTs, resulting in novel CNT/PB paste electrodes. This innovative preparation route produces an intimate contact between the PB and the CNTs, which improves the stability and redox properties of PB. The PB formation and the chemical interaction between the PB and the CNTs are confirmed by Raman spectroscopy. The electrode is employed as a hydrogen peroxide amperometric sensor, resulting in a very low limit of detection (1.94 × 10?8 mol L?1) and very high sensitivity (15.3 A cm?2 M ?1).  相似文献   

17.
The development of highly active and stable earth‐abundant catalysts to reduce or eliminate the reliance on noble‐metal based ones in green and sustainable (electro)chemical processes is nowadays of great interest. Here, N‐, O‐, and S‐tridoped carbon‐encapsulated Co9S8 (Co9S8@NOSC) nanomaterials are synthesized via simple pyrolysis of S‐ and Co(II)‐containing polypyrrole solid precursors, and the materials are proven to serve as noble metal‐free bifunctional electrocatalysts for water splitting in alkaline medium. The nanomaterials exhibit remarkable catalytic performances for oxygen evolution reaction in basic electrolyte, with small overpotentials, high anodic current densities, low Tafel slopes as well as very high (nearly 100%) Faradic efficiencies. Moreover, the materials are found to efficiently electrocatalyze hydrogen evolution reaction in acidic as well as basic solutions, showing high activity in both cases and maintaining good stability in alkaline medium. A two‐electrode electrolyzer assembled using the material synthesized at 900 °C (Co9S8@NOSC‐900) as an electrocatalyst at both electrodes gives current densities of 10 and 20 mA cm?2 at potentials of 1.60 and 1.74 V, respectively. The excellent electrocatalytic activity exhibited by the materials is proposed to be mainly due to the synergistic effects between the Co9S8 nanoparticles cores and the heteroatom‐doped carbon shells in the materials.  相似文献   

18.
Nanoparticles with both efficient light emission and strong magnetization (MFSNPs) are fabricated by one‐pot, surfactant‐free sol–gel reaction of tetraethoxysilane and silole‐functionalized siloxane in the presence of citrate‐coated magnetite nanoparticles. The MFSNPs are uniformly sized with smooth surfaces. They possess core–shell structures and exhibit appreciable surface charges and hence good colloidal stability. The MFSNPs are superparamagnetic, exhibiting no hysteresis at room temperature. UV irradiation of the suspension of MFSNPs in ethanol gives strong green emission at 486 nm, thanks to the novel aggregation‐induced emission characteristics of the silole aggregates in the hybrid nanoparticles. The MFSNPs can selectively stain the cytoplasmic regions of the living cells. Addition of (3‐aminopropyl)triethoxysilane during the fabrication of MFSNPs has generated MFSNP‐NH2 with numerous amino groups decorated on the surface, enabling the nanoparticles to immobilize bovine serum albumin efficiently.  相似文献   

19.
The nitridation of hollow TiO2 nanoshells and their layered assembly into electrodes for electrochemical energy storage are reported. The nitridated hollow shells are prepared by annealing TiO2 shells, produced initially using a sol–gel process, under an NH3 environment at different temperatures ranging from 700 to 900 °C, then assembled to form a robust monolayer film on a water surface through a quick and simple assembly process without any surface modification to the samples. This approach facilitates supercapacitor cell design by simplifying the electrochemical electrode structure by removing the need to use any organic binder or carbon‐based conducting materials. The areal capacitance of the as‐prepared electrode is observed to be ≈180 times greater than that of a bare TiO2 electrode, mainly due to the enhanced electrical conductivity of the TiN phase produced through the nitridation process. Furthermore, the electrochemical capacitance can be enhanced linearly by constructing an electrode with multilayered shell films through a repeated transfer process (0.8 to 7.1 mF cm–2, from one monolayer to 9 layers). Additionally, the high electrical conductivity of the shell film makes it an excellent scaffold for supporting other psuedocapacitive materials (e.g., MnO2), producing composite electrodes with a specific capacitance of 743.9 F g–1 at a scan rate of 10 mV s–1 (based on the mass of MnO2) and a good cyclic stability up to 1000 cycles.  相似文献   

20.
Yolk‐like nano/microparticles with superparamagnetic iron oxide (SPIO) cores and hierarchical nickel silicate (NS) shells, designated yolk SPIO@NS, are fabricated by combining the versatile sol–gel process and the hydrothermal reaction, involving the coating of SPIO particles with SiO2 and transformation of the SiO2 shells into NS hollow spheres with hierarchical nanostructures. Various yolk/shell nanostructures with tunable NS shell thicknesses and SPIO core sizes are successfully prepared by controlling the experimental para­meters. Au nanoparticles can be impregnated into the yolk‐like microspheres in situ to form SPIO@NS/Au composite particles and the as‐prepared magnetic nanocatalysts show good catalytic activity, using the catalytic reduction of RhB as a model reaction. This facile method can be extended to the synthesis of other encapsulated particles with yolk‐like nanostructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号