首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider the ??‐filtering problem for singularly perturbed (two time‐scale) nonlinear systems. Two types of filters are discussed, namely, (i) decomposition and (ii) aggregate, and sufficient conditions for the solvability of the problem in terms of Hamilton–Jacobi–Isaac's equations (HJIEs) are presented. Reduced‐order filters are also derived in each case, and the results are specialized to linear systems, in which case the HJIEs reduce to a system of linear‐matrix‐inequalities (LMIs). Based on the linearization of the nonlinear models, upper bounds ε* of the singular parameter ε that guarantee the asymptotic stability of the nonlinear filters can also be obtained. The mixed ??2/??‐filtering problem is also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the ?? and l2l filtering problem is investigated for two‐dimensional (2‐D) discrete‐time linear parameter‐varying (LPV) systems. Based on the well‐known Fornasini–Marchesini local state‐space (FMLSS) model, the mathematical model of 2‐D systems under consideration is established by incorporating the parameter‐varying phenomenon. The purpose of the problem addressed is to design full‐order ?? and l2l filters such that the filtering error dynamics is asymptotic stable and the prescribed noise attenuation levels in ?? and l2l senses can be achieved, respectively. Sufficient conditions are derived for existence of such filters in terms of parameterized linear matrix inequalities (PLMIs), and the corresponding filter synthesis problem is then transformed into a convex optimization problem that can be efficiently solved by using standard software packages. A simulation example is exploited to demonstrate the usefulness and effectiveness of the proposed design method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper we give an optimal state–space solution to the ???/?? fault‐detection (FD) problem for linear time invariant dynamic systems. An optimal ???/?? FD filter minimizes the sensitivity of the residual signal to disturbances while maintaining a minimum level of sensitivity to faults. We provide a state–space realization of the optimal filter in an observer form using the solution of a linear matrix inequalities optimization problem. We also show that, through the use of weighting filters, the detection performance can be enhanced and some assumptions can be removed. Two numerical examples are given to illustrate the algorithm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a scheme to design robust sliding mode observers(SMO) with ?? performance for uncertain nonlinear Lipschitz systems where both faults and disturbances are considered. We study the necessary conditions to achieve insensitivity of the proposed sliding mode observer to the unknown input(fault). The objective is to derive a sufficient condition using linear matrix inequality(LMI) optimization for minimizing the ?? gain between the estimation error and disturbances, while at the same time the design method guarantees that the solution of the LMI optimization satisfies the so‐called structural matching condition. The sliding motion affects only a part of the system through a novel reduced‐order sliding mode controller. Furthermore, the so‐called equivalent control concept is discussed for fault estimation. Finally, a numerical example of MCK chaos demonstrates the high performance of the results compared with a pure SMO. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This paper addresses the problem of controlling a linear system subject to actuator saturations and to ??2‐bounded disturbances. Linear matrix inequality (LMI) conditions are proposed to design a state feedback gain in order to satisfy the closed‐loop input‐to‐state stability (ISS) and the closed‐loop finite gain ??2 stability. By considering a quadratic candidate Lyapunov function, two particular tools are used to derive the LMI conditions: a modified sector condition, which encompasses the classical sector‐nonlinearity condition considered in some previous works, and Finsler's Lemma, which allows to derive stabilization conditions which are adapted to treat multiple objective control optimization problems in a potentially less conservative framework. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
This paper studies the design problem of robust delay‐dependent ?? controller for a class of time‐delay control systems with time‐varying state and input delays, which are assumed to be noncoincident. The system is subject to norm‐bounded uncertainties and ??2 disturbances. Based on the selection of an augmented form of Lyapunov–Krasovskii (L‐K) functional, first a Bounded Real Lemma (BRL) is obtained in terms of linear matrix inequalities (LMIs) such that the nominal, unforced time‐delay system is guaranteed to be globally asymptotically stable with minimum allowable disturbance attenuation level. Extending BRL, sufficient delay‐dependent criteria are developed for a stabilizing ?? controller synthesis involving a matrix inequality for which a nonlinear optimization algorithm with LMIs is proposed to get feasible solution to the problem. Moreover, for the case of existence of norm‐bounded uncertainties, both the BRL and ?? stabilization criteria are easily extended by employing a well‐known bounding technique. A plenty of numerical examples are given to illustrate the application of the proposed methodology of this note. The achieved numerical results on the maximum allowable delay bound and minimum allowable disturbance attenuation level are exhibited to be less conservative in comparison to those of existing methods in the literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates the problem of ?? filtering for a class of uncertain Markovian jump linear systems. The uncertainty is assumed to be norm‐bounded and appears in all the matrices of the system state‐space model, including the coefficient matrices of the noise signals. It is also assumed that the jumping parameter is available. We develop a methodology for designing a Markovian jump linear filter that ensures a prescribed bound on the ??2‐induced gain from the noise signals to the estimation error, irrespective of the uncertainty. The proposed design is given in terms of linear matrix inequalities. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
This paper focuses on the H model reduction problem of positive fractional order systems. For a stable positive fractional order system, we aim to construct a positive reduced‐order fractional system such that the associated error system is stable with a prescribed H performance. Then, based on the bounded real lemma for fractional order systems, a sufficient condition is given to characterize the model reduction problem with a prescribed H‐norm error bound in terms of a linear matrix inequality (LMI). Furthermore, by introducing a new flexible real matrix variable, the desired reduced‐order system matrices are decoupled with the complex matrix variable and further parameterized by the new matrix variable. A corresponding iterative LMI algorithm is also proposed. Finally, several illustrative examples are given to show the effectiveness of the proposed algorithms.  相似文献   

9.
This paper investigates the problem of ?? filtering for discrete‐time linear systems with Markovian jumping parameters. It is assumed that the jumping parameter is available. This paper develops necessary and sufficient conditions for designing a discrete‐time Markovian jump linear filter which ensures a prescribed bound on the ?2‐induced gain from the noise signals to the estimation error. The proposed filter design is given in terms of linear matrix inequalities. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
A novel delay‐dependent filtering design approach is developed for a class of linear piecewise discrete‐time systems with convex‐bounded parametric uncertainties and time‐varying delays. The time‐delays appear in the state as well as the output and measurement channels. The filter has a linear full‐order structure and guarantees the desired estimation accuracy over the entire uncertainty polytope. The desired accuracy is assessed in terms of either ??‐performance or ??2–?? criteria. A new parametrization procedure based on a combined Finsler's Lemma and piecewise Lyapunov–Krasovskii functional is established to yield sufficient conditions for delay‐dependent filter feasibility. The filter gains are determined by solving a convex optimization problem over linear matrix inequalities. In comparison to the existing design methods, the developed methodology yields the least conservative measures since all previous overdesign limitations are almost eliminated. By means of simulation examples, the advantages of the developed technique are readily demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper revisits the static output‐feedback stabilization problem of continuous‐time linear systems from a novel perspective. The closed‐loop system is represented in an augmented form, which facilitates the parametrization of the controller matrix. Then, new equivalent characterizations on stability and ?? performance of the closed‐loop system are established in terms of matrix inequalities. On the basis of these characterizations, a necessary and sufficient condition with slack matrices for output‐feedback stabilizability is proposed, and an iteration algorithm is given to solve the condition. An extension to output‐feedback ?? control is provided as well. The effectiveness and merits of the proposed approach are shown through several examples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we consider the discrete‐time mixed ??2/?? filtering problem for affine nonlinear systems. Necessary and sufficient conditions for the solvability of this problem with a finite‐dimensional filter are given in terms of a pair of coupled discrete‐time Hamilton–Jacobi‐Isaac's equations (DHJIE) with some side‐conditions. For linear systems, it is shown that these conditions reduce to a pair of coupled discrete‐time algebraic‐Riccati‐equations (DAREs) or a system of linear matrix inequalities (LMIs) similar to the ones for the control case. Both the finite‐horizon and infinite‐horizon problems are discussed. Moreover, sufficient conditions for approximate solvability of the problem are also derived. These solutions are especially useful for computational purposes, considering the difficulty of solving the coupled DHJIEs. An example is also presented to demonstrate the approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a new theory of two‐degrees‐of‐freedom (2‐DOF)‐?? and certainty‐equivalent filters is presented. Exact and approximate solutions to the nonlinear ?? filtering problem using this class of filters are derived in terms of discrete‐time Hamilton–Jacobi–Isaacs equations. The expressions for the filter gains are determined as functions of the filter state and the system's output in contrast to earlier results. Hence, it is shown that coupled with the additional degree‐of‐freedom, these filters are a substantial improvement over the earlier 1‐DOF case. The theory presented is also generalized to n‐DOF filters, which bore strong connections to linear infinite‐impulse response filters and hence are generalizations of this class of filters to the nonlinear setting. Simulation results are also given to show the usefulness of the new approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a novel delay‐dependent bounded real criterion and an improved sufficient condition are derived for the design of an H state‐feedback controller for linear neutral time‐delay systems. On the basis of an augmented Lyapunov‐Krasovskii functional, a new bounded real lemma is introduced in terms of a convex linear matrix inequality (LMI) condition that can be solved using interior point algorithms. The bounded real lemma is extended to obtain a sufficient condition for the existence of a delay‐dependent H memoryless state‐feedback controller. Neither any model transformation nor bounding of any of the cross terms are utilized while deriving the bounded real lemma. Moreover, the use of any free slack matrix variable approach is avoided to a certain extent in order not to increase the complexity of the synthesis problem. A cone complementary nonlinear minimization algorithm is employed to achieve a feasible solution set for the synthesis conditions. Finally, seven numerical examples are given to illustrate the effectiveness of the proposed method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

15.
This paper addresses the problem of robust H control for uncertain continuous singular systems with state delay. The singular system under consideration involves state time delay and time‐invariant norm‐bounded uncertainty. Based on the linear matrix inequality (LMI) approach, we design a memoryless state feedback controller law, which guarantees that, for all admissible uncertainties, the resulting closed‐loop system is not only regular, impulse free and stable, but also meets an H‐norm bound constraint on disturbance attenuation. A numerical example is provided to demonstrate the applicability of the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we consider the mixed ??2/?? filtering problem for affine nonlinear systems. Sufficient conditions for the solvability of this problem with a finite‐dimensional filter are given in terms of a pair of coupled Hamilton–Jacobi–Isaacs equations (HJIEs). For linear systems, it is shown that these conditions reduce to a pair of coupled Riccati equations similar to the ones for the control case. Both the finite‐horizon and the infinite‐horizon problems are discussed. Simulation results are presented to show the usefulness of the scheme, and the results are generalized to include other classes of nonlinear systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
General recent techniques in fault detection and isolation (FDI) are based on H optimization methods to address the issue of robustness in the presence of disturbances, uncertainties and modeling errors. Recently developed linear matrix inequality (LMI) optimization methods are currently used to design controllers and filters, which present several advantages over the Riccati equation‐based design methods. This article presents an LMI formulation to design full‐order and reduced‐order robust H FDI filters to estimate the faulty input signals in the presence of uncertainty and model errors. Several cases are examined for nominal and uncertain plants, which consider a weight function for the disturbance and a reference model for the faults. The FDI LMI synthesis conditions are obtained based on the bounded real lemma for the nominal case and on a sufficient extension for the uncertain case. The conditions for the existence of a feasible solution form a convex problem for the full‐order filter, which may be solved via recently developed LMI optimization techniques. For the reduced‐order FDI filter, the inequalities include a non‐convex constraint, and an alternating projections method is presented to address this case. The examples presented in this paper compare the simulated results of a structural model for the nominal and uncertain cases and show that a degree of conservatism exists in the robust fault estimation; however, more reliable solutions are achieved than the nominal design. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In Section 5 of Aliyu and Boukas (Int. J. Robust Nonlinear Control 2009; 19 :394–417), the authors have presented certainty‐equivalent filters for the mixed ??2/?? filtering problem for affine nonlinear systems. Sufficient conditions for the solvability of the problem with a finite‐dimensional filter are given in terms of a pair of coupled Hamilton–Jacobi–Isaacs equations (HJIEs). In this note, we supply a correction to these HJIEs. Moreover, for linear systems this correction is not necessary. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This paper revisits the problem of delay‐dependent robust ? filtering design for a class of continuous‐time polytopic linear systems with a time‐varying state delay. Based on a newly developed parameter‐dependent Lyapunov–Krasovskii functional combined with Projection Lemma and an improved free‐weighting matrix technique for delay‐dependent criteria, a new sufficient condition for robust ? performance analysis is first derived and then the filter synthesis is developed by using a simple matrix inequality linearization technique. It is shown that the desired filters can be constructed by solving a set of linear matrix inequalities. Finally, two simulation examples are given to show the effectiveness and less conservatism of the proposed method in comparison with the existing approaches. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
We deal with H state feedback control problem for the multi‐input‐multi‐output (MIMO) servo system and discuss the advantages of the facial reduction (FR) to the resulting linear matrix inequality (LMI) problems. In fact, as far as our usual setting, the dual of the LMI problem is not strictly feasible because the generalized plant has always stable invariant zeros. Thus FR is available to such LMI problems, and we can reduce and simplify the original LMI problem to a smaller‐size LMI problem. As a result, we observe that the numerical performance of the SDP solvers is improved. Also, as a by‐product, we obtain the best performance index of the reduced LMI problem with a closed‐form expression. This helps the H performance limitation analysis. Another contribution is to reveal that the resulting LMI problem obtained from H control problem has a finite optimal value, but no optimal solutions under an additional assumption. This is also confirmed in the numerical experiment of this paper. FR also plays an essential role in this analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号