首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用有机蒙脱土(OMMT)、聚酰胺6(PA6)和丙烯腈-丁二烯-苯乙烯共聚物(ABS),通过熔融共混的方法制备了PA6/ABS/OMMT共混物。利用透射电子显微镜(TEM)、差示扫描量热仪(DSC)及动态热力学分析仪(DMA)研究了OMMT在PA6/ABS(70/30)合金体系中的分布和分散状况,以及PA6/ABS/OMMT共混体系的结晶行为和热力学性能。结果表明:OMMT片层主要分散于PA6相中,PA6与ABS的两相界面处亦存在少量OMMT片层。OMMT的加入降低了PA6/ABS共混体系的结晶温度,使PA6的结晶结构发生改变,说明OMMT具有一定的增容作用。引入OMMT后,PA6/ABS共混体系的储能模量有所提升,玻璃化转变温度则变化较小。  相似文献   

2.
张武英  徐国敏 《塑料》2014,(3):33-37
采用熔融共混法,以PA6/PET(30/70)和PA6/PET(70/30)合金为研究对象,利用差示扫描量热法(DSC)探讨纳米有机OMMT对PA6/PET共混物结晶性能的影响,结果表明:PA6/PET共混物中,PA6相和PET相均能各自结晶,且PA6相阻碍PET相的结晶,而PET相对PA6相的结晶性能没有影响。引入纳米OMMT后,体系中PA6相和PET相的结晶温度均降低,并缩短半结晶时间,加剧两组分结晶温度对降温速率的依赖性。用莫志深方法处理纯PA6/PET共混物和PA6/PET/OMMT纳米复合材料的非等温结晶动力学,结果表明:在PA6/PET(30/70)共混体系中引入纳米OMMT后,F(T)值均增大,而在PA6/PET(70/30)共混体系中引入纳米OMMT,F(T)值减小。  相似文献   

3.
熔融挤出制备了有机蒙脱土(OMMT)含量不同的ABS/OMMT,PA6/OMMT复合材料,用X射线衍射仪(XRD)、透射电子显微镜(TEM)等仪器研究OMMT分别在ABS、PA6基体中的分布情况及对其力学性能的影响.结果表明:在ABS/OMMT复合材料中,OMMT主要为插层结构,大部分OMMT片层以聚集状态存在;而对PA6/OMMT复合材料,OMMT片层主要以剥离形态分布在PA6基体相中;随着OMMT含量增加,ABS/OMMT复合材料的拉伸、弯曲强度及弯曲模量都先上升后下降,且当OMMT含量在3份时性能较好,其缺口冲击强度呈下降趋势;PA6/OMMT复合材料在OMMT含量为3份时,其拉伸、弯曲强度和弯曲模量都出现极值现象,而缺口冲击强度线性降低.由于OMMT与PA6有较好的亲和力,在PA6中分散性较好,使PA6/OMMT复合材料的综合力学性能比ABS/OMMT复合材料的优异.  相似文献   

4.
研究了有机蒙脱土(OMMT)对尼龙6(PA6)/丙烯腈-丁二烯-苯乙烯(ABS)/苯乙烯-马来酸酐共聚物(SMA)合金体系聚集态结构及性能的影响。实验表明:OMMT的加入提高了PA6/ABS合金体系的强度及模量,但加入OMMT后共混物的韧性有所下降。TEM的分析结果表明:对PA6/ABS/SMA/OMMT共混物,OMMT用量小于2份时,PA6/ABS/SMA/OMMT共混物中OMMT基本以剥离形态分布。  相似文献   

5.
《塑料》2017,(2)
通过对PA66/ABS共混体系改性前后相形态、结晶形态和熔融结晶行为的分析,研究了增容剂PB-g-MAH对共混体系相容性及结晶性能的影响。结果表明:增容改性抑制了ABS颗粒在PA66基体中的团聚,使ABS以单颗粒形式均匀分散在基体中,并增强了两相间的界面黏结作用,改善了两相间的相容性;增容改性后,共混物中的ABS以单颗粒形式均匀分散,起到了成核剂的作用,使PA66的晶粒细化,球晶数量增多,尺寸降低;在增容共混物中,随着PB-g-MAH添加量的增大,低温熔融峰逐渐增强,高温熔融峰逐渐减弱,结晶峰温向高温方向移动,结晶度增大。  相似文献   

6.
随着社会的不断发展,汽车在人们的生活中开始变得常见,而汽车市场中的竞争也日益激烈。各大汽车厂商为了提高竞争力,纷纷开始新材料和新工艺的研究。其中,PA6/ABS共混体系是一种较为常用的体系,在实际应用中,其各方面的性能都十分优良,因而得到了越来越广泛的应用。基于此,本文对汽车用PA6/ABS共混体系的各方面性能进行了研究,以期推动汽车工业的更大发展。  相似文献   

7.
采用差示扫描量热法研究了不同配比的聚酰胺6/丙烯腈-丁二烯-苯乙烯共聚物(PA6/ABS)共混物的非等温结晶过程,同时研究了冷却速率对PA6/ABS(80/20)共混物结晶行为的影响,对其数据分别采用Jeziorny法和Mo法进行处理。结果表明,共混物中ABS含量由0提高到30%时,Avrami指数n从4.55增大至7.04,结晶峰温由174.2℃提高到183.3℃;随着冷却速率的增大,PA6/ABS(80/20)共混物结晶度降低,结晶峰值温度降低,半结晶时间减小。  相似文献   

8.
以聚己内酰胺(PA6)为主体材料,将丙烯腈–丁二烯–苯乙烯塑料(ABS)与PA6共混,并加入马来酸酐接枝ABS (ABS-g-MAH)作相容剂,研究了ABS及相容剂ABS-g-MAH用量对PA6/ABS共混物力学性能的影响。结果表明,随着ABS用量增加,PA6/ABS共混物的拉伸强度下降,冲击强度先上升后下降,收缩率变化不大,ABS用量为10份时PA6/ABS共混物的综合性能较好。相容剂ABS-g-MAH对PA6/ABS共混物的力学性能有较明显的影响,随着相容剂用量增加,拉伸强度和冲击强度均先上升后下降,相容剂用量3~9份时有利于共混物保持较高的拉伸强度和冲击强度。  相似文献   

9.
研究了PA6/ABS的配比、玻璃微珠、硅酮、PTFE、成核剂、PMMA等组分对共混体系表面耐刮擦性能的影响。结果表明,确保材料力学性能优异的前提下,提高耐刮擦性的最佳方法是降低PA6的含量,PA6含量不大于50份时,体系的耐刮擦性较好。  相似文献   

10.
采用差示扫描量热法研究了不同配比的聚酰胺6/丙烯腈-丁二烯-苯乙烯共聚物(PA6/ABS)共混物的非等温结晶过程,同时研究了冷却速率对PA6/ABS(80/20)共混物结晶行为的影响,对其数据分别采用Jeziorny法和Mo法进行处理。结果表明,共混物中ABS含量为由0提高到30 %时,Avrami指数n从4.55增大至7.04,结晶峰温由174.2 ℃提高到183.3 ℃;随着冷却速率的增大,PA6/ABS(80/20)共混物结晶度降低,结晶峰值温度降低,半结晶时间减小。  相似文献   

11.
PP/PA6/OMMT复合材料力学性能与结晶性能的研究   总被引:1,自引:0,他引:1  
采用3种不同有机改性过的蒙脱土(牌号为DK2,DK3,DK5)熔融插层法制备了PP/PA6/OMMT纳米复合物材料,在此基础上使用1%~7%的DK2的蒙脱土再次制备PP/PA6/OMMT纳米复合物材料,借助力学性能测试和差示扫描量热法(DSC)对体系的力学性能和结晶性能进行了研究。结果表明:使用DK2制备的复合材料的力学性能优于使用DK3和DK5制备的复合材料的力学性能;相对于纯PP,PP/PA6/OMMT纳米复合物材料随OMMT含量的增加,拉伸强度和弯曲强度是先增加后降低,最大下降幅度分别为8.7%和5.3%;冲击韧性一直上升达到9.61kJ/m2。OMMT的加入,对PP/PA6有异相成核的作用,提高PP/PA6的结晶速率和结晶度。  相似文献   

12.
将聚酰胺6(PA6)与市售的丙烯腈-丁二烯-苯乙烯(ABS)树脂共混,制备PA6/ABS共混物。研究了ABS树脂的用量对PA6/ABS共混物力学性能的影响;采用苯乙烯及丙烯腈共聚物(SAN)和ABS粉料熔融共混制得不同胶含量的ABS/SAN共混物。研究了不同胶含量的ABS/SAN共混物对PA6/ABS共混物力学性能的影响。在PA6/ABS/SAN共混物中引入苯乙烯-丙烯腈-马来酸酐共聚(SAM)树脂取代部分SAN树脂,研究了SAM树脂的加入及引入顺序的不同对共混物性能的影响。结果表明, ABS树脂的用量在50%~60%左右时共混物性能最佳。随ABS/SAN共混物胶含量提高,共混物的拉伸强度、弹性模量、弯曲强度和弯曲模量逐渐降低。随SAM树脂替代SAN量增加,共混物的拉伸和弯曲性能先降低后增加。但共混物熔体流动速率降低明显,而SAM树脂的引入顺序对共混物的力学性能影响不大。  相似文献   

13.
通过熔融共混法制备了EBA-g-MAH增容PA6/ABS共混物,采用FTIR、SEM、DSC等测试了EBA-g-MAH对PA6/ABS共混物的增容作用;并讨论了EBA-g-MAH对PA6/ABS共混物的结晶性、力学性能及吸水率的影响。研究结果表明:EBA-g-MAH与PA6发生化学反应所生成的接枝物对PA6/ABS共混物有较好的增容作用,使分散相尺寸明显减小;PA6/ABS共混物的冲击强度得到很大的提高,比纯PA6提高430%,吸水性也得到改善,但是拉伸强度有所降低。DSC研究表明:EBA-g-MAH的加入抑制了PA6/ABS共混物中PA6的结晶,使PA6结晶度降低。  相似文献   

14.
利用双螺杆挤出机将尼龙(PA)6与聚烯烃弹性体(POE)共混,研究添加过氧化二异丙苯(DCP)、马来酸酐(MAH)后的体系性能以及工艺条件对性能的影响。结果表明,POE含量在15份时缺口冲击强度仅提高了3 k J/m2,拉伸强度降低明显;当双螺杆挤出机的转速为100 r/min,DCP用量为0.2份,体系的力学性能达到最佳值;在DCP用量为0.2份时,添加0.4份MAH,体系的缺口冲击强度相对于纯PA6,提高约12 k J/m2;通过SEM分析冲击断面发现,加入了DCP或DCP/MAH后,POE分散相尺寸相对于单纯的两相共混体系的明显减小。  相似文献   

15.
采用转矩流变仪,在温度为230℃、转速为80 r/min的条件下进行密炼,熔融共混制备不同聚酰胺6(PA6)与丁腈橡胶(NBR)配比的PA6/NBR共混物,通过差示扫描量热仪、热台偏光显微镜、转矩流变仪、电子万能试验机等分析手段研究了PA6与NBR配比对PA6/NBR共混物性能的影响。结果表明,PA6与NBR配比对PA6/NBR共混物的性能有显著的影响;添加NBR后,PA6的结晶温度提高了10℃左右,NBR对PA6具有异相成核作用并显著降低了结晶尺寸;随着NBR含量的增加,PA6结晶度逐渐下降,当NBR增大到80质量份时,PA6/NBR共混物的结晶度由纯PA6的29.30%降至15.21%,导致PA6/NBR共混物拉伸强度和耐溶剂性能逐渐下降。  相似文献   

16.
以马来酸酐(MAH)接枝苯乙烯-(乙烯-丁烯)-苯乙烯共聚物SEBS(SEBS-g-MAH)为增韧剂,有机蒙脱土(OMMT)为增强填料,甲基丙烯酸缩水甘油酯(GMA)为相容剂,采用熔融挤出方法制备了PA6/SEBS-gMAH/OMMT复合材料.通过力学、毛细管流变性能测试,考察了SEBS-g-MAH、OMMT和GMA对共混物的力学性能及流变性能的影响.结果表明,共混材料能在保持基本强度及模量稳定的情况下提高冲击强度,获得良好的综合力学性能.PA6及其共混物均为假塑性流体,在230~260℃共混材料的非牛顿指数为0.603~0.931,表观黏度随着剪切应力的增加而降低;加入SEBS-g-MAH、OMMT和/或GMA使得PA6的表观黏度增大,黏流活化能降低;在恒定剪切应力下PA6共混物可在较宽的温度范围内成型加工.  相似文献   

17.
以PP-g-MAH作增容剂,通过熔融共混制备了PA6/PBT共混物。采用DSC研究共混体系的结构性能,通过熔融指数,拉伸强度和抗冲击强度测试研究共混体系的力学性能。结果表明:当PP-g-MAH添加量达到2份时,PA6/PBT/PP-g-MAH共混物拉伸强度提高了14.8%,冲击强度提高了43.8%,结晶温度、熔融温度降低,熔体流动速率减小。  相似文献   

18.
采用双螺杆挤出机制备了聚酰胺6 (PA6)/聚间苯二甲酰己二胺(PA6I)共混物,对不同配比的PA6/PA6I共混物进行了力学性能、成型收缩率、吸水率、透光率、耐车用尿素溶液性能的研究。结果表明,随着PA6I含量的增加,PA6/PA6I共混物的拉伸强度、弯曲强度逐步增大,而断裂伸长率、简支梁缺口冲击强度先降低后升高,在PA6I含量为15%时,二者均出现最小值;共混物的成型收缩率、吸水率随着PA6I含量的增加逐步降低,在PA6I含量为45%时,成型收缩率降低了46.0%、吸水率降低了51.2%;共混物的透光率、耐尿素溶液的能力随着PA6I含量的增加逐步增大,在PA6I含量为45%时,透光率达到70%,在车用尿素溶液中浸泡72h后,共混物的拉伸强度保持率、弯曲强度保持率分别达到84.1%,77.4%,比纯PA6的相应性能分别提高了16.5%,16.0%。  相似文献   

19.
《塑料》2016,(4)
通过熔融共混法制备了聚对苯二甲酸丁二醇酯/有机蒙脱土(PBT/OMMT)复合材料,并对其非等温结晶性能和力学性能进行了研究。结果表明:随着OMMT含量的增加,PBT/OMMT复合材料的结晶峰温向高温方向移动,结晶峰变得狭窄且半结晶时间变得更短;随着冷却速率的增加,PBT/OMMT复合材料的结晶峰温度向低温移动且半结晶时间变得更短。利用热台偏光显微镜观察PBT和PBT/OMMT复合材料的球晶形态,PBT/OMMT复合材料球晶相比纯PBT变得更小,且边界更不清晰。  相似文献   

20.
孙莉  项赛飞 《中国塑料》2010,24(1):33-37
研究了不同含量的有机蒙脱土(OMMT)对高密度聚乙烯/聚酰胺6(PE-HD/PA6)合金的结晶性能和微观结构的影响。X射线衍射和差示扫描量热仪分析表明,随着OMMT的含量的增加,PA6倾向于生成γ晶型;扫描电镜分析表明,对于PE-HD/PA6合金,PA6以球状分散在PE-HD基体中,相尺寸直径较大,为30~40 μm;添加OMMT后,PA6分子链的极性基团可以与OMMT层间表面产生强的相互作用,使得大分子链在熔融过程中进入OMMT层间,得到PE-HD/PA6/OMMT纳米复合材料。当添加3份OMMT后,复合材料中分散相PA6的相尺寸降低至10 μm,尺寸分布均匀,说明OMMT起到了相容剂的作用。同时,适量的OMMT提高了PE-HD/PA6合金对有机溶剂的阻透性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号