首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
胡萌  鲁世强  李鑫  黄旭  曹京霞 《锻压技术》2011,36(2):119-123
利用Gleeble热模拟机对Ti40合金在变形温度为950~1100.C、应变速率为0.001~1s-1范围内进行了等温恒应变速率压缩实验.通过分析真应力一真应变曲线,研究了热力参数对流动应力的影响规律,并建立了Ti40合金的本构关系.误差分析表明,该本构方程具有很高的精度,可用于指导Ti40合金热加工工艺制定,并可用...  相似文献   

2.
铸态TB6钛合金热变形行为及本构关系   总被引:1,自引:0,他引:1  
通过等温恒应变速率压缩实验研究铸态TB6钛合金在温度为800~1 100 ℃,应变速率为10-3~1 s-1条件下的热变形行为.结果表明:应变速率对铸态TB6合金流变应力的影响最显著,其次是变形温度,而应变的影响作用最小.在低温高应变速率下,流变应力曲线呈连续软化特征,而在高温低应变速率下,流变应力曲线呈稳态流变特征.铸态TB6合金的热变形激活能为200 kJ/mol,接近纯钛β相的自扩散激活能,表明在实验条件范围内主要发生动态回复过程.在Arrhenius方程基础上考虑了应变对流变应力曲线的影响,建立了能准确描述铸态TB6钛合金流变应力曲线的双曲正弦本构关系.  相似文献   

3.
在Gleeble-3500热/力模拟试验机上对轧态Ni-40Ti形状记忆合金进行等温恒应变速率拉伸试验,研究了变形温度为650~850℃,应变速率为0.01~1.00s~(-1)条件下合金的热变形行为。结果表明,应变速率和变形温度对流变应力具有显著影响,合金流变应力随着变形温度升高和应变速率降低而降低。基于Arrhenius方程和多元线性回归法构建了合金本构关系模型。误差分析表明,采用Arrhenius方程预测轧态Ni-40Ti合金的热拉伸变形行为存在较大误差;而采用多元线性回归法建立的本构模型能较准确预测轧态Ni-40Ti合金的热拉伸变形行为,流变应力预测值与试验值符合较好。  相似文献   

4.
在Gleeble-3800热模拟机上对锻态β-CEZ钛合金在变形温度800~1000℃、应变速率0.01~10 s-1、变形程度70%的参数下进行了热模拟试验。根据真应力—真应变曲线研究了变形温度和应变速率对应力的影响,利用Arrhenius双曲正弦方程和Z参数建立了β-CEZ钛合金热变形本构方程。结果表明:β-CEZ钛合金的流变应力与变形速率成正比,与变形温度成反比;在试验条件下β-CEZ钛合金表现出动态回复和动态再结晶两种软化机制。误差分析表明,建立的热变形本构方程与试验值基本一致,能为β-CEZ钛合金有限元模拟及变形工艺选取提供理论依据。  相似文献   

5.
采用Gleeble-3800型热模拟试验机在变形温度为700~850℃、应变速率为0.001~1 s-1条件下对SP700钛合金进行等温恒应变速率压缩试验,分析SP700钛合金的热变形行为。首次探讨了该合金考虑变形温度对杨氏模量和自扩散系数影响的传统物理本构关系以及考虑晶界扩散和晶格扩散耦合的修正物理本构关系。结果表明,SP700钛合金的流动应力曲线为典型的动态再结晶型曲线,其流动应力随应变速率的降低和变形温度的升高而减小;传统物理本构关系和修正的物理本构关系相关系数R分别为0.986和0.965,平均相对误差AARE分别为14.4%和13.1%,说明建立的两个物理本构关系都能较好地表征该合金的流动应力行为。另外,确定了该合金在700~800℃热变形时主要扩散机制是晶界扩散,在850℃热变形时主要是晶格扩散。  相似文献   

6.
在THERMECMASTER-Z型热模拟试验机上,对锻态TB6钛合金在真应变为0.92、变形温度为800℃~1150℃、应变速率为0.001s-1~1s-1的条件下进行等温恒应变速率压缩试验,分析合金在β单相区条件下的热变形特点,并观察金相组织。结果表明,应变速率对合金流动应力的影响较显著;而变形温度对合金流动应力的影响在较高应变速率时较大,在较低应变速率时较小。动态再结晶晶粒尺寸和动态再结晶体积分数,随温度的升高而增大,随应变速率的增大而减小。从晶粒细化和动态再结晶组织均匀性考虑,当真应变为0.92时,变形温度选择在950℃~1050℃之间,应变速率选择在0.01s-1为宜。  相似文献   

7.
在Gleeble-1500D热模拟机上对等离子烧结态TC4钛合金开展单向热压缩实验,研究该合金在应变速率为10-3~5 s~(-1)、变形温度为850~1050℃条件下的热变形行为。根据Arrheniu方程构建符合等离子烧结态TC4钛合金高温塑性变形的本构方程。结果表明:在初始变形阶段,由于加工硬化的作用,等离子烧结态TC4钛合金流变应力值随应变的增加迅速达到峰值应力,而后应力值开始减小并趋于稳定,表明该合金变形行为符合稳态流变特征;采用所建立的等离子烧结态TC4钛合金的Arrhenius双曲正弦本构方程能够较好地预测TC4钛合金的峰值应力,且预测值与实测值之间的平均相对误差为6. 73%。在950℃和0. 1 s~(-1)以及1050℃和5 s~(-1)条件下,模型平均相对误差绝对值分别为2. 03%和4. 67%。等离子烧结态TC4钛合金的平均变形激活能为411 k J·mol~(-1),平均应变速率敏感指数为0. 21。  相似文献   

8.
利用Gleeble-3500热模拟试验机对TC4 ELI钛合金在两相区温度为750~950℃、应变速率为0.001~70s-1条件下进行等温恒应变速率压缩试验,分析了该合金的热变形行为,并采用Arrhenius方程和BP人工神经网络模型建立了该合金的本构关系模型。结果表明,应变速率与变形温度对TC4 ELI钛合金流变应力影响显著,流变应力随变形温度升高和应变速率降低而降低;在两相区热变形时,原始组织α相发生了不同程度的球化/动态再结晶,并且低应变速率会促进球化/动态再结晶的发生;采用Arrhenius方程和BP人工神经网络模型建立的本构方程平均误差分别为17.51%和1.36%,BP人工神经网络模型具有更高的精度,更适合用于TC4 ELI钛合金的流动应力预测。  相似文献   

9.
在Gleeble-3500热模拟试验机上进行等温热压缩试验,得到TA11钛合金在温度为954~1074℃、应变速率为0.05~5 s~(-1)、变形量为60%条件下的真应力-真应变曲线。根据真应力-真应变曲线,分析流变应力随变形温度、应变速率和应变的变化规律。结果表明,流变应力与变形速率成正比,与变形温度成反比;利用Arrhenius双曲正弦方程和Z参数建立了TA11钛合金的热变形本构方程。经验证明,试验值与所建立的本构方程的预测值吻合较好,可用于预测TA11钛合金塑性变形过程中的变形抗力和作为有限元数值模拟的材料模型。  相似文献   

10.
TB6钛合金热变形行为及本构模型研究   总被引:1,自引:0,他引:1  
研究材料的热变形行为及建立其本构模型是进行材料加工与模拟的基础。通过对TB6钛合金热变形行为分析,表明流变应力受应变速率的影响较显著,而变形温度对流变应力的影响程度与应变速率的大小有关。采用Arrhenius型双曲正弦方程建立了TB6钛合金流变应力本构模型。研究变形条件对TB6钛合金流变应力的影响。结果表明,可通过控制应变速率和变形激活能来控制热加工的应力水平和力能参数,为TB6钛合金塑性加工过程控制和模拟提供前提条件。  相似文献   

11.
利用Gleeble-3500热模拟试验机进行等温恒应变速率热压缩实验,研究了TC4钛合金在温度800~950℃、应变速率0.001~10s-1条件下的流动软化行为。研究发现随变形温度降低和应变速率增大TC4钛合金的流动软化程度增大,且800~850℃、应变速率1~10s-1变形时的流动软化主要是塑形流动失稳引起的,温度900~950℃、应变速率0.001~0.1s-1条件变形时,流动软化主要是片状α相的等轴化引起的。引入应变对材料常数α、n、A和Q的影响,建立了考虑应变的TC4钛合金Arrhenius本构方程,建立的本构模型精度较好,在800℃、850℃和10s-1条件以及在900℃、950℃和0.1s-1条件下,模型平均绝对误差分别为4.2%和4.3%。TC4钛合金的平均变形激活能为403kJ/mol,平均应变速率敏感指数为0.26。  相似文献   

12.
在热模拟试验机上对铸态Ti40合金在950~1100℃、应变速率0.001~1.0 s-1范围内进行了热压缩实验,并基于动态材料模型理论建立了该合金的加工图,通过分析加工图和观察变形组织,研究了该合金的高温变形特性。结果表明,该合金加工图上失稳区范围为950~1040℃、0.1~1.0 s-1,功率耗散效率η值最小,为0.16~0.35,易出现局部流动现象。加工图上有两个η峰值区,范围分别为1070~1100℃、0.1~1.0 s-1和1000~1100℃、0.001~0.02 s-1,η值分别达到局部最大和整个加工图最大,分别为0.42~0.68和0.44~0.76,对应的变形特性均为动态再结晶,二者是优化的加工区。加工图上除失稳区和η峰值区以外,其它区域的η值为0.36~0.44,介于失稳区和峰值区的η值之间,是热变形时可选的区域。  相似文献   

13.
在不同温度下对TC11钛合金进行了压缩实验,采用金相显微镜观察了其变形后的显微组织,并利用扫描电子显微镜对其不同变形程度变形后的显微组织进行了观察。结果发现,在较低温度下变形时在晶界处发生了动态再结晶组织,在1000℃时显微组织以动态再结晶晶粒为主,当温度达到1000℃时合金组织中再结晶晶粒相互长大,呈等轴状。  相似文献   

14.
TC11钛合金高温变形本构关系研究   总被引:4,自引:0,他引:4  
在Thermecmastor-Z型热加工模拟试验机上,对TC11钛合金在990℃~1080℃、0.001s-1~70s-1范围内进行了高温压缩实验。通过真应力-真应变曲线,分析了流动应力随变形热力参数的变化规律,并在Arrhenius方程的基础上考虑了真应变对流动应力的影响,构建出TC11钛合金的本构关系。误差分析表明,该本构方程有较好的精度,可适合于工程应用。  相似文献   

15.
Ti40阻燃钛合金热变形的开裂预测   总被引:2,自引:0,他引:2  
Ti40阻燃钛合金热变形困难且容易发生开裂。因此,研究该合金在不失效的情况下实现预期的变形就显得非常重要。本研究采用韧性断裂准则和有限元模拟相结合的方法,对Ti40合金热变形过程进行开裂预测。通过圆柱试样不同温度和应变速率的压缩模拟试验,发现在一定的变形条件下该合金会发生纵向开裂和剪切开裂。随后的有限元模拟获得了变形试样各个区间的应力一应变分布情况及演变过程,这被用来评价6种已有的韧性断裂准则对Ti40合金高温变形的初始开裂位置及损伤值预测的准确性。研究结果表明,只有Oyane韧性断裂准则能准确地预测试验范围内所有条件的Ti40合金的初始开裂位置和临界开裂值。  相似文献   

16.
为了研究钛合金薄壁型材的热拉伸变形行为,采用INSTRON高温拉伸实验机对OT4合金薄壁型材的板形拉伸试样进行热拉伸实验,获得了该合金型材在室温至600℃范围内的拉伸实验数据。分析了OT4合金薄壁型材的热拉伸变形规律,并在此基础上建立了其热拉伸变形的Johnson-Cook本构模型。采用相关性系数(R)和平均相对误差(AARE)对本构模型的预测能力进行评估,并对预测数据与实验数据之间偏差产生的原因进行了分析。结果表明,300℃及以下温度范围内,本构模型的应力预测值与实验值吻合度较好;但随着温度的升高,应力预测值与实验值之间偏差明显增大,导致模型的平均相对误差较高(值为4.3392%)。为了提高应力预测值与实验值之间的吻合度,本文对Johnson-Cook本构模型中相对温度与应力之间的关系进行修正,修正后的平均相对误差值降至2.0994%。  相似文献   

17.
分别反映金属流变应力特征和组织-变形关系的本构关系和第二类再结晶全图是TC18钛合金热加工工艺制订的关键数据。在Gleeble3800热模拟试验机上,对于TC18钛合金进行系列热压缩变形,其中,变形温度为790℃~900℃,应变速率为0.01s-1~10s-1,应变量为0.1~0.5。通过拟合Arrhenius式中α, n, Q, lnA与ε的六次多项式,建立了材料高温热压缩本构方程,热压缩流变应力预测值与实验值吻合良好;通过组织观察及α晶粒尺寸测算绘制出其各应变速率下的第二类再结晶全图。  相似文献   

18.
《塑性工程学报》2016,(2):120-125
利用Gleeble-3800热模拟试验机进行热压缩实验,研究了TC4-DT钛合金在温度1163K~1293K、应变速率为0.005s~(-1)~0.5s~(-1)、变形量为60%条件下的热变形行为。根据应力-应变曲线分析该合金的流变应力变化特点,建立该合金的Arrhenius双曲正弦型本构方程。结果表明,所建立的本构方程与实验值吻合程度较高,为制定TC4-DT钛合金热加工工艺规范提供理论依据。  相似文献   

19.
用Gleeble-3500热模拟试验机对40CrNiMo钢在750~1050℃、0.1~50s-1变形条件下,进行了单道次热压缩试验,获得了其流变应力曲线。利用考虑应变补偿的双曲正弦模型、误差验证等方法,对流变应力数据进行了分析。结果表明:40CrNiMo钢的流变应力曲线呈现加工硬化型、动态回复型、动态再结晶型等几种类型;应变量一定,流变应力随着变形温度的降低和应变速率的增大而增大;应变速率较变形温度对流变应力曲线的波动影响显著,应变速率为50s-1,各变形温度下流变应力曲线均呈现明显波动;应变补偿下变形量对40CrNiMo钢的材料常数有显著影响;热变形激活能随变形增大在207.38~331.82kJ·mol-1变化;应变补偿下本构方程的平均相对误差不大于9%,近90%的相关系数大于0.90。  相似文献   

20.
利用热模拟试验机对铸态Ti40合金在950~1100℃、0.001~1.0s<'-1>条件下进行热压缩试验,研究了应变速率对该合金流动应力和变形组织的影响.结果表明,流动应力随应变速率的增大而增大,不同温度和应变速率的真应力-真应变曲线呈稳态流动型.温度越低,发生动态再结晶的应变速率越小,且动态再结晶晶粒的体积分数和平均晶粒尺寸均随应变速率的减小而增大.在实验热力参数下的动态再结晶程度比较低,最大的体积分数在20%左右,再结晶晶粒的平均尺寸为19.2~47.0μm.从降低能耗和提高加工性能等角度考虑,在950~1000℃,应变速率以小于0.1s<'-1>为宜;在1050℃附近,应变速率以小于1.0s<'-1>为宜;在1100℃附近,应变速率以1.0~0.001s<'-1>较适宜.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号