首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The elimination of possible defects is indispensable in making zeolite membranes popular in process industries. A novel counter‐diffusion chemical liquid deposition (CLD) technique is proposed and developed for selective defect‐patching of zeolite membranes. Dodecyltrimethoxysilane (DMS) is employed as the silane coupling agent, forming a protective layer on the membrane surface so that intracrystalline pores can be kept intact in the subsequent reparation step. By using tetraethoxy orthosilicate (TEOS) and (3‐chloropropyl)triethoxysilane (3CP‐TES), co‐hydrolysis and co‐condensation at the organic/aqueous interface fabricate the silsesquioxane/silicate hybrid on macro‐, meso‐ and even microdefects. The silicalite‐1 membrane before and after reparation is characterized using contact‐angle measurements, Fourier transform IR spectroscopy, and electron probe microanalysis. Permporometry is conducted to study the pore‐size distribution of the membrane before and after reparation. It is found that the silsesquioxane/silicate hybrid is only deposited at the pore‐mouth of the defects, and the defects can be plugged to less than 1.3 nm pores after patching. After reparation, the separation factor of a 50/50 n/i‐butane‐gas mixture through the membrane can be increased to 35.8 from 4.4, and the separation factor of a CO2/N2 gas mixture through the membrane can be increased to around 15 from 1, while keeping the two‐thirds CO2 permeation flux of the synthesized membrane.  相似文献   

2.
3.
The design of hierarchical zeolite catalysts is attempted through the maximization of the hierarchy factor (HF); that is, by enhancing the mesopore surface area without severe penalization of the micropore volume. For this purpose, a novel desilication variant involving NaOH treatment of ZSM‐5 in the presence of quaternary ammonium cations is developed. The organic cation (TPA+ or TBA+) acts as a pore‐growth moderator in the crystal by OH?‐assisted silicon extraction, largely protecting the zeolite crystal during the demetallation process. The protective effect is not seen when using cations that are able to enter the micropores, such as TMA+ Engineering the pore structure at the micro‐ and mesolevel is essential to optimize transport properties and catalytic performance, as demonstrated in the benzene alkylation with ethylene, a representative mass‐transfer limited reaction. The hierarchy factor is an appropriate tool to classify hierarchically structured materials. The latter point is of wide interest to the scientific community as it not only embraces mesoporous zeolites obtained by desilication methods but it also enables to quantitatively compare and correlate various materials obtained by different synthetic methodologies.  相似文献   

4.
A simple room temperature solution‐based method for the preparation of highly porous iron(III) benzenetricarboxylate coordination polymer films on the internal surface of a macroporous polystyrene‐divinylbenzene‐methacrylic acid polymer is reported. The resulting metal‐organic polymer hybrid (MOPH) maintains a high specific micropore surface area of 389 m2 g‐1 and thermal stability above 250 °C in air. The MOPH preparation is readily adapted to a capillary column, yielding a flow‐through separation device with excellent flow permeability and modest back‐pressure. The excellent separation capability of the MOPH column is demonstrated by enriching phosphopeptides from mixtures of digested proteins. This approach to MOPH synthesis is easily implemented and likely adaptable to a wide range of coordination polymers and metal‐organic frameworks.  相似文献   

5.
Asymmetric membranes are prepared via the non‐solvent‐induced phase separation (NIPS) process from a polystyrene‐block‐poly(N,N‐dimethylaminoethyl methacrylate) (PS‐b‐PDMAEMA) block copolymer. The polymer is prepared via sequential living anionic polymerization. Membrane surface and volume structures are characterized by scanning electron microscopy. Due to their asymmetric character, resulting in a thin separation layer with pores below 100 nm on top and a macroporous volume structure, the membranes are self‐supporting. Furthermore, they exhibit a defect‐free surface over several 100 µm2. Polystyrene serves as the membrane matrix, whereas the pH‐ and temperature‐sensitive minority block, PDMAEMA, renders the material double stimuli‐responsive. Therefore, in terms of water flux, the membranes are able to react on two independently applicable stimuli, pH and temperature. Compared to the conditions where the lowest water flux is obtained, low temperature and pH, activation of both triggers results in a seven‐fold permeability increase. The pore size distribution and the separation properties of the obtained membranes were tested through the pH‐dependent filtration of silica particles with sizes of 12–100 nm.  相似文献   

6.
The introduction of mesoporosity in zeolites is often directly coupled to changes in their overall catalytic performance without the detailed assessment of other key functions required for the rational design of the catalytic process such as accessibility, adsorption, and transport. This study presents an integrated approach to study property–function relationships in hierarchical zeolites. Accordingly, desilication of the 1D ITQ‐4 zeolite in alkaline medium is applied to develop different degrees of mesoporosity. Along with porosity modification, significant changes in composition, structure, and acidity occur. Relationships are established between the physicochemical properties of the zeolites and their characteristics in the adsorption and elution of light hydrocarbons (C2 to C5, alkanes and alkenes) as well as in the catalytic activity in low‐density polyethylene (LDPE) pyrolysis. The recently introduced hierarchy factor can appropriately relate porosity changes to catalytic performance.  相似文献   

7.
A frontal polymerization method is used to produce highly porous polymer monoliths. The method is an approach to polymer synthesis that exploits the heat produced by the reaction itself. This heat triggers polymerization of neighboring monomer molecules, leading to a self‐sustaining hot front, which propagates along the reacting vessel. Dissolved or microencapsulated foaming agents are decomposed only at the fronts, synchronizing the polymerization and the foaming. The ultimate pore structures appear to depend on the polymerization‐front velocity and temperature. The resultant materials are porous, exhibiting tunable pore volume and a multimodal pore size distribution. No organic solvents or high‐pressure equipment are used in the process, and no solvent residues are left in the resulting materials. Specifically, this route allows for the synthesis of large‐scale samples with the additional advantages of high velocity, low energy cost, and the avoidance of multiple process steps. Substitution of hydrophilic acrylamide, N‐isopropylacrylamide, with hydrophobic styrene and methyl methacrylate also leads to porous monolithic materials, suggesting that frontal polymerization represents a powerful and facile method for an exothermic polymerization reaction and the creation of porous polymers.  相似文献   

8.
We have fabricated switchable gas permeation membranes in which a photoswitchable low‐molecular‐weight liquid crystalline (LC) material acts as the active element. Liquid crystal mixtures are doped with mesogenic azo dyes and infused into commercially available track‐etched membranes with regular cylindrical pores (0.40 to 10.0 μm). Tunability of mass transfer can be achieved through a combination of (1) LC/mesogenic dye composition, (2) surface‐induced alignment, and (3) reversible photoinduced LC‐isotropic transitions. Photo‐induced isothermal phase changes in the imbibed material afford large and fully reversible changes in the permeability of the membrane to nitrogen. Both the LC and photogenerated isotropic states demonstrate a linear permeability/pressure relationship, but they show significant differences in their permeability coefficients. Liquid crystal compositions can be chosen such that the LC phase is more permeable than the isotropic—or vice versa – and can be further tuned by surface alignment. Permeability switching response times are 5 s, with alternating UV and >420‐nm radiation at an intensity of 2 mW/cm2 being sufficient for complete and reversible switching. Thermal and kinetic properties of the confined LC materials are evaluated and correlated with the observed permeation properties. We demonstrate for the first time reversible permeation control of a membrane with light irradiation.  相似文献   

9.
10.
The modification of microporous carbon foam with boron and nitrogen through a facile microwave chemical treatment are reported. The resulting surfaces of the foam exhibit distinct B–N and carbon domains based on chemical and microscopic analysis, in keeping with theoretical predictions. The resultant materials are shown to exhibit exceptionally high methanol desorption enthalpy and thermal stability in comparison to untreated carbon foam and consequently are suggested as candidate materials for sorption cooling and thermal storage applications using methanol as the adsorbate.  相似文献   

11.
RuO2‐based mesoporous thin films of optical quality are synthesized from ruthenium‐peroxo‐based sols using micelle templates made of amphiphilic polystyrene‐polyethylene oxide block copolymers. The mesoporous structure and physical properties of the RuO2 films (mesoporous volume: 30%; pore diameter: ~30 nm) can be controlled by the careful tuning of both the precursor solution and thermal treatment (150–350 °C). The optimal temperature that allows control of both mesoporosity and nanocristallinity is strongly dependent on the substrate (silicon or fluorine‐doped tin oxide). The structure of the resulting mesoporous films are investigated using X‐ray diffraction, X‐ray photoelectron spectroscopy, and atomic force microscopy. Mesoporous layers are additionally characterized by transmission and scanning electron microscopy and ellipsometry while their electrochemical properties are analyzed via cyclic voltammetry. Thick mesoporous films of ruthenium oxide hydrates, RuO2 · xH2O, obtained using a thermal treatment at 280 °C, exhibit capacitances as high as 1000 ± 100 F g?1 at a scan rate of 10 mV s?1, indicating their potential application as electrode materials.  相似文献   

12.
Covalent organic frameworks (COFs) are crystalline porous polymers formed by a bottom‐up approach from molecular building units having a predesigned geometry that are connected through covalent bonds. They offer positional control over their building blocks in two and three dimensions. This control enables the synthesis of rigid porous structures with a high regularity and the ability to fine‐tune the chemical and physical properties of the network. This Feature Article provides a comprehensive overview over the structures realized to date in the fast growing field of covalent organic framework development. Different synthesis strategies to meet diverse demands, such as high crystallinity, straightforward processability, or the formation of thin films are discussed. Furthermore, insights into the growing fields of COF applications, including gas storage and separations, sensing, electrochemical energy storage, and optoelectronics are provided.  相似文献   

13.
Proton exchange membranes (PEMs) that can heal mechanical damage to restore original functions are imperative for fabricating reliable and durable proton exchange membrane fuel cells (PEMFCs). Here, an ultra-stable, highly proton conductive self-healing PEM via hydrogen-bonding complexation between Nafion and poly(vinyl alcohol) (PVA) followed by incorporation of sodium lignosulfonate (SLS) intercalation-modified graphene oxide (GO) and post-modification with 4-formylbenzoic acid (FBA) is presented. Notably, the introduction of GO complexes and post-modification of FBA molecules effectively improves the stability of composite membranes and also participate in the establishment of proton-conducting nanochannels. Compared with recast Nafion, the FBA-Nafion/PVA@SLS/GO composite membranes exhibit enhanced mechanical properties (36.2 MPa at 104.8% strain) and higher proton conductivity (0.219 S cm−1 at 80 °C-100% RH and 23.861 mS cm−1 at 80 °C-33% RH, respectively). More importantly, the incorporated PVA gives the FBA-Nafion/PVA@SLS/GO composite membranes superior self-healing capabilities that can heal mechanical damage of several tens of micrometers in size and restore their original proton conductivity under the operating conditions of the PEMFCs. This study opens an avenue toward the development of reliable and durable PEM for PEMFCs.  相似文献   

14.
Magnetite nanoparticles modified covalently with triethoxysilane having a quaternary dicetyl ammonium ion are used together with tetraethylorthosilicate as building blocks to prepare a mesoporous material. Cetyltrimethylammonium bromide is used as a structure‐directing agent under conditions typically used for mesoporous MCM‐41 silicas. The resulting mesoporous material (MAG‐MCM‐41), containing up to 15 wt % of magnetite is characterized by transmission electron microscopy (TEM), isothermal gas adsorption, and X‐ray diffraction. In contrast to siliceous MCM‐41, mesoporous MAG‐MCM‐41 exhibits a remarkable hydrothermal stability. The magnetic properties of MAG‐MCM‐41 are characterized by DC and AC magnetic susceptibility, and by isothermal hysteresis cycles, confirming the long‐range magnetic ordering above 400 K. As evidenced by atomic force microscopy and TEM, the ability to respond to magnetic fields is used to orient films of MAG‐MCM‐41 with the channels perpendicular to a support.  相似文献   

15.
Composite films with low dielectric constants (k) containing micro‐ and mesopores are synthesized from precursor solutions for the preparation of mesoporous silica and ethanolic suspensions of silicalite‐1 nanoparticles. The material contains silicalite‐1 nanoparticles (include nanocrystals and nanoslabs/intermediates) embedded in a randomly oriented matrix of highly porous mesoporous silica. Micropores result from the incorporated silicalite‐1 nanoparticles, while decomposition of the porogen F127 leads to additional mesopores. The porosity of the composite films increases from 9 to 60% with the increase in porogen loading, while in parallel the elastic modulus and hardness decrease. The elastic moduli of the films are in the range of 13–20 GPa. Hydrophobic surfaces of the composite films are obtained by introducing methyl triethoxysilane during the preparation of both precursor solutions, leading to the incorporation of ? CH3 groups in the final composite films. These methyl groups are stable up to at least 500 °C. A low k value of approximately 2 is observed for films cured at 400 °C in N2 flow, which is ideal for removing templates without decomposing methyl groups. Due to the intrinsic hydrophobicity of the material, post‐silylation is not required rendering the composite films attractive candidates for future low k materials.  相似文献   

16.
Graphene sheets have been demonstrated to be the building blocks for various assembly structures, which eventually determine the macroscopic properties of graphene materials. As a new assembly structure, transparent macroporous graphene thin films (MGTFs) are not readily prepared due to the restacking tendency of graphene sheets during processing. Here, an ice crystal‐induced phase separation process is proposed for preparation of transparent MGTFs. The ice crystal‐induced phase separation process exhibits several unique features, including efficient prevention of graphene oxide restacking, easy control on the transparency of the MGTFs, and wide applicability to substrates. It is shown that the MGTFs can be used as porous scaffold with high conductivity for electrochemical deposition of various semiconductors and rare metal nanoparticles such as CdSe, ZnO, and Pt, as well as successive deposition of different materials. Notably, the macroporous structures bestow the MGTFs and the nanoparticle‐decorated MGTFs (i.e., Pt@MGTF and CdSe@MGTF) enhanced performance as electrode for oxygen reduction reaction and photoelectrochemical H2 generation.  相似文献   

17.
Porous gold structures with a well‐defined pore size and thickness are obtained through electrochemical deposition of gold in a colloidal crystal template synthesized by the Langmuir–Blodgett (LB) technique. Cylindrical gold wires were used as substrates for the LB deposition of successive monolayers of silica particles of various sizes, and the electrodeposition of gold through this inorganic template led to a homogeneous, porous metal structure. These materials were characterized through typical electrochemical experiments and showed high surface‐to‐volume ratios with promising features for their further use in miniaturized electrocatalytic devices.  相似文献   

18.
19.
Nature not only carefully prepares ingenious raw materials but also continuously inspires and guides human beings to create a wide variety of intelligent materials. As the most abundant mineral resource on earth, clay minerals are no longer synonymous with ceramics and cements. Many natural clay minerals can be exfoliated into single‐ or few‐layered nanosheets with exquisite physicochemical properties, which can be reassembled into functional membranes with a macroscopic controllable size and microscopic ordered structure. They are thus used in many fields including chemistry, biology, energy, and environmental science. Strategic design represents one of the key processes to enhance the value of clay minerals and broaden their applications. In this work, the three frequently used approaches of exfoliation are highlighted and the six routes of assembly including casting, dip‐coating, spray coating, vacuum filtration, electrophoretic deposition, and 3D printing are compared. The corresponding principles and advantages are summarized. Representative applications of clay‐based multifunctional membranes in protection, separation, responsiveness, flexible electronics, and energy conversion are presented. The challenges and future perspectives of the clay‐based multifunctional membranes are discussed.  相似文献   

20.
Self‐assembled membranes offer a promising alternative for conventional membrane fabrication, especially in the field of ultrafiltration. Here, a new pore‐making strategy is introduced involving stimuli responsive protein‐polymer conjugates self‐assembled across a large surface area using drying‐mediated interfacial self‐assembly. The membrane is flexible and assembled on porous supports. The protein used is the cage protein ferritin and resides within the polymer matrix. Upon denaturation of ferritin, a pore is formed which intrinsically is determined by the size of the protein and how it resides in the matrix. Due to the self‐assembly at interfaces, the membrane constitutes of only one layer resulting in a membrane thickness of 7 nm on average in the dry state. The membrane is stable up to at least 50 mbar transmembrane pressure, operating at a flux of about 21 000–25 000 L m?2 h?1 bar?1 and displayed a preferred size selectivity of particles below 20 nm. This approach diversifies membrane technology generating a platform for “smart” self‐assembled membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号