共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy 总被引:1,自引:0,他引:1
Metallic iron filings are commonly employed as reducing agents in permeable barriers used for remediating groundwater contaminated by chlorinated solvents. Reactions of trichloroethylene (TCE) and tetrachloroethylene (PCE) with zerovalent iron were investigated to determine the role of atomic hydrogen in their reductive dechlorination. Experiments simultaneously measuring dechlorination and iron corrosion rates were performed to determine the fractions of the total current going toward dechlorination and hydrogen evolution. Corrosion rates were determined using Tafel analysis, and dechlorination rates were determined from rates of byproduct generation. Electrochemical impedance spectroscopy (EIS) was used to determine the number of reactions that controlled the observed rates of chlorocarbon disappearance, as well as the role of atomic hydrogen in TCE and PCE reduction. Comparison of iron corrosion rates with those for TCE reaction showed that TCE reduction occurred almost exclusively via atomic hydrogen at low pH values and via atomic hydrogen and direct electron transfer at neutral pH values. In contrast, reduction of PCE occurred primarily via direct electron transfer at both low and neutral pH values. At low pH values and micromolar concentrations, TCE reaction rates were faster than those for PCE due to more rapid reduction of TCE by atomic hydrogen. At neutral pH values and millimolar concentrations, PCE reaction rates were faster than those for TCE. This shift in relative reaction rates was attributed to a decreasing contribution of the atomic hydrogen reaction mechanism with increasing halocarbon concentrations and pH values. The EIS data showed that all the rate limitations for TCE and PCE dechlorination occurred during the transfer of the first two electrons. Results from this study show that differences in relative reaction rates of TCE and PCE with iron are dependent on the significance of the reduction pathway involving atomic hydrogen. 相似文献
2.
The kinetics of chromate removal from contaminated water by zerovalent iron media are not well understood. This study investigated the reactions occurring on iron surfaces in chromate solutions in order to understand the removal kinetics and to assess the long-term ability of zerovalent iron for removing Cr(VI) from contaminated water. Tafel polarization analysis and electrochemical impedance spectroscopy were used to determine the corrosion rates and charge-transfer resistances associated with Cr(VI) removal by iron wires suspended in electrolyte solutions with initial Cr(VI) concentrations of 10,000 microg/L. The condition of the iron surfaces at the time of their exposure to chromate determined the effectiveness of the iron for chromate removal. Both iron coated with a water-formed oxide and initially oxide-free iron were effective for chromate removal. However, iron coated with an air-formed oxide was an order of magnitude less effective for removing soluble chromium. Although iron with the air-formed oxide was largely passivated with respect to chromate removal, its overall rate of corrosion was similar to that for iron with the other initial surface conditions. This indicates that water, but not chromate, was able to penetrate the air-formed oxide coating and access cathodic sites. For all initial surface conditions, addition of chromate decreased the corrosion rate by increasing the corrosion potential and the anodic charge transfer resistance. Although Cr(VI) is a strong oxidant rates of iron corrosion were not proportional to the aqueous Cr(VI) concentrations due to anodic control of iron corrosion. Under anodically controlled conditions, the rate of corrosion was limited by the rate at which Fe2+ could be released at anodic sites and not by the rate at which oxidants were able to accept electrons. This study shows that the zero order removal kinetics of Cr(VI) by iron media can be explained by anodic control of iron corrosion and the concomitant anodic control of Cr(VI) reduction. 相似文献
3.
Melitas N Wang J Conklin M O'Day P Farrell J 《Environmental science & technology》2002,36(9):2074-2081
Zerovalent iron filings have been proposed as a filter medium for removing arsenic compounds from potable water supplies. This research investigated the kinetics of arsenate removal from aqueous solutions by zerovalent iron media. Batch experiments were performed to determine the effect of the iron corrosion rate on the rate of As(V) removal. Tafel analyses were used to determine the effect of the As(V) concentration on the rate of iron corrosion in anaerobic solutions. As(V) removal in column reactors packed with iron filings was measured over a 1-year period of continuous operation. Comparison of As(V) removal by freely corroding and cathodically protected iron showed that rates of arsenate removal were dependent on the continuous generation of iron oxide adsorption sites. In addition to adsorption site availability, rates of arsenate removal were also limited by mass transfer associated with As(V) diffusion through iron corrosion products. Steady-state removal rates in the column reactor were up to 10 times faster between the inlet-end and the first sampling port than between the first sampling port and the effluent-end of the column. Faster removal near the influent-end of the column was due to a faster rate of iron oxidation in that region. The presence of 100 microg/L As(V) decreased the iron corrosion rate by up to a factor of 5 compared to a blank electrolyte solution. However, increasing the As(V) concentration from 100 to 20,000 microg/L resulted in no further decrease in the iron corrosion rate. The kinetics of arsenate removal ranged between zeroth- and first-order with respect to the aqueous As(V) concentration. The apparent reaction order was dependent on the availability of adsorption sites and on the aqueous As(V) concentration. X-ray absorption spectroscopy analyses showed the presence of iron metal, magnetite (Fe3O4), an Fe(III) oxide phase, and possibly an Fe(II,III) hydroxide phase in the reacted iron filings. These mixed valent oxide phases are not passivating and permit sustained iron corrosion and continuous generation of new sites for As(V) adsorption. 相似文献
4.
A daunting challenge facing the water industry and regulators is how to simultaneously control microbial pathogens, residual disinfectant, and disinfection byproducts in drinking water, and to do so at an acceptable cost. Of the different pathogens, viruses are especially problematic due to their small size, high mobility, and resistance to chlorination and filtration. In the past decade, zerovalent iron has been used to treat a wide variety of organic and inorganic contaminants from groundwater. However, iron has not been tested against biological agents. This study examined the effectiveness of commercial zerovalent iron to remove two viruses, phiX174 and MS-2, from water. Removal of these viruses by iron granules in batch reactors was first-order, and the rate was likely controlled by external mass transfer. Most of the viruses removed from solution were either inactivated or irreversibly adsorbed to iron. In a flow-through column containing zerovalent iron (with 20 min of iron contact time), the removal efficiency for both viruses was 4-log in an initial pulse test, and over 5-log in the second pulse test after passage of 320 pore volumes of artificial groundwater. We assume that the improved efficiency was due to continuous formation of new iron (oxyhydr)oxides which served as virus adsorption sites. To our knowledge, this is the first demonstration of biological agent removal from water by zerovalent iron. Results of this study suggest zerovalent iron may be potentially useful for disinfecting drinking water and wastewater, thereby reducing our dependence on chlorine and reducing the formation of disinfection byproducts. 相似文献
5.
Zerovalent iron (Fe0) has tremendous potential as a remediation material for removal of arsenic from groundwater and drinking water. This study investigates the speciation of arsenate (As(V)) and arsenite (As(III)) after reaction with two Fe0 materials, their iron oxide corrosion products, and several model iron oxides. A variety of analytical techniques were used to study the reaction products including HPLC-hydride generation atomic absorption spectrometry, X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray analysis, and X-ray absorption spectroscopy. The products of corrosion of Fe0 include lepidocrocite (gamma-FeOOH), magnetite (Fe3O4), and/or maghemite (gamma-Fe2O3), all of which indicate Fe(II) oxidation as an intermediate step in the Fe0 corrosion process. The in-situ Fe0 corrosion reaction caused a high As(III) and As(V) uptake with both Fe0 materials studied. Under aerobic conditions, the Fe0 corrosion reaction did not cause As(V) reduction to As(III) but did cause As(III) oxidation to As(V). Oxidation of As(III) was also caused by maghemite and hematite minerals indicating that the formation of certain iron oxides during Fe0 corrosion favors the As(V) species. Water reduction and the release of OH- to solution on the surface of corroding Fe0 may also promote As(III) oxidation. Analysis of As(III) and As(V) adsorption complexes in the Fe0 corrosion products and synthetic iron oxides by extended X-ray absorption fine structure spectroscopy (EXAFS) gave predominant As-Fe interatomic distances of 3.30-3.36 A. This was attributed to inner-sphere, bidentate As(III) and As(V) complexes. The results of this study suggest that Fe0 can be used as a versatile and economical sorbent for in-situ treatment of groundwater containing As(III) and As(V). 相似文献
6.
Liou YH Lo SL Lin CI Hu CY Kuan WH Weng SC 《Environmental science & technology》2005,39(24):9643-9648
Both surface treatments, H2-reducing pretreatment at 400 degrees C and the deposition of copper as a catalyst, were attempted to enhance the removal of nitrate (40 (mg N) L(-1)) using zerovalent iron in a HEPES buffered solution at a pH of between 6.5 and 7.5. After the iron surface was pretreated with hydrogen gas, the removal of the passive oxide layers that covered the iron was indicated by the decline in the oxygen fraction (energy dispersive X-ray analysis) and the overlap of the cyclic polarization curves. The reaction rate was doubled, and the lag of the early period disappeared. Then, the deposition of copper onto freshly pretreated iron promoted nitrate degradation more effectively than that onto a nonpretreated iron surface, because of the high dispersion and small size of the copper particles. An optimum of 0.25-0.5% (w/w) Cu/Fe accelerated the rate by more than six times that of the nonpretreated iron. The aged 0.5% (w/w) Cu/Fe with continual dipping in nitrate solution for 20 days completely restored its reactivity by a regeneration process with H2 reduction. Hence, these two iron surface treatments considerably promoted the removal of nitrate from near-neutral water; the reactivity of Cu/Fe was effectively recovered. 相似文献
7.
8.
An investigation on dielectric properties of major constituents of grape must using electrochemical impedance spectroscopy 总被引:1,自引:0,他引:1
The Australian wine industry has been undergoing an unprecedented growth during the last decade in both winery establishments and export volumes. Though automated controlling processes are useful for maintaining high quality products and reducing costs, the techniques are not widely adopted by small to medium sized wineries due to their relative high initial costs. In this paper, we investigate the dielectric properties of ethanol and organic acids, two major chemical ingredients that need to be monitored during wine fermentation using electrochemical impedance spectroscopy. The relationships between solution concentrations and parameters derived from the measured impedance spectra were investigated by two methods, the Nyquist plot approach and the equivalent circuit modeling approach. The investigation was carried out for both pure solutions including ethanol, malic acid and tartaric acid, the major constituents of grape must, and their various mixed compound solutions to simulate the grape must under fermentation. Strong linear as well as inverse-squared relations were found between the concentrations of the pure solutions and the derived dielectric parameters, e.g., the diameter of the Nyquist plot for ethanol has a correlation with concentrations with a coefficient of determination of 0.9796 and the R s value obtained from electric circuit modeling also shows a strong inverse-squared relationship with the concentration of both malic and tartaric acids. A further investigation suggests that the individual concentration of mixed acid solutions can be handily determined by measuring the impedance of the mixed acid solutions and using the initial concentration value of one of the mixed acids. Furthermore, the dielectric properties of mixed ethanol, malic acid and tartaric acid show a combined effort from mixed acid solutions and pure ethanol. These findings suggest that the electrochemical impedance, which can be easily measured with satisfactory accuracy, is a good indicator of the concentration change of the essential ingredients of grape must and thus can be further utilized to develop a feedback loop for wine fermentation automatic control. 相似文献
9.
10.
Passive in situ remediation technologies, for example, permeable reactive barriers, PRBs, are an attractive and less expensive alternative compared to conventional pump and treat systems for groundwater remediation. Field column experiments were conducted to evaluate the removal of dissolved mercury from groundwater using zerovalent iron as the reactive media. Two column tests were conducted over a 6-week period, which simulated 2 and 10 years of groundwater flow through a potential full-scale treatment system. The influent groundwater pH was 7.8-9.5. The groundwater was reduced with an Eh, corrected to the standard hydrogen electrode, ranging from 0 to 120 mV over the trial period. Prior to treatment the total mercury concentration of the groundwater was approximately 40 microg L(-1). Effluent from the 10-year simulation contained approximately 0.5 microg/L of mercury during the first 3 weeks and increased to as much as 4 microg L(-1) by the end of the testing period. Effluent from the 2-year simulation was generally < 0.1 microg L(-1). Profile sampling of the 2-year simulation suggests that most of the mercury removal occurred in the initial 50% of the 20 cm column. Mineralogical studies, conducted using SEM/EDS and X-ray absorption spectroscopy (XAS), confirm the accumulation of mercury onto a zerovalent iron surface in this 20-cm zone. These analyses indicate that mercury accumulated as a mercury sulfide with a stoichiometery similar to those of cinnabar and metacinnabar (HgS). 相似文献
11.
Hori H Nagaoka Y Yamamoto A Sano T Yamashita N Taniyasu S Kutsuna S Osaka I Arakawa R 《Environmental science & technology》2006,40(3):1049-1054
Decomposition of perfluorooctanesulfonate (PFOS) and related chemicals in subcritical water was investigated. Although PFOS demonstrated little reactivity in pure subcritical water, addition of zerovalent metals to the reaction system enhanced the PFOS decomposition to form F-ions, with an increasing order of activity of no metal approximately equal Al < Cu < Zn < Fe. Use of iron led to the most efficient PFOS decomposition: When iron powder was added to an aqueous solution of PFOS (93-372 microM) and the mixture was heated at 350 degrees C for 6 h, PFOS concentration in the reaction solution fell below 2.2 microM (detection limit of HPLC with conductometric detection), with formation of F-ions with yields [i.e., (moles of F- formed)/(moles of fluorine content in initial PFOS) x 100] of 46.2-51.4% and without any formation of perfluorocarboxylic acids. A small amount of CHF3 was detected in the gas phase with a yield [i.e., (moles of CHF3)/(moles of carbon content in initial PFOS) x 100] of 0.7%, after the reaction of PFOS (372 microM) with iron at 350 degree C for 6 h. Spectroscopic measurements indicated that PFOS in water markedly adsorbed on the iron surface even at room temperature, and the adsorbed fluorinated species on the iron surface decomposed with rising temperature, with prominent release of F- ions to the solution phase above 250 degrees C. This method was also effective in decomposing other perfluoroalkylsulfonates bearing shorter chain (C2-C6) perfluoroalkyl groups and was successfully applied to the decomposition of PFOS contained in an antireflective coating agent used in semiconductor manufacturing. 相似文献
12.
Mahfoozur Rehman Basem A.J.A. Abu Izneid Mohd Zaid Abdullah Mohd Rizal Arshad 《International Journal of Food Science & Technology》2011,46(6):1303-1309
This study deals with the development of a nondestructive impedance spectroscopic technique that may assess the conditions of the fruits to pluck them with the help of robotic arms. Preliminary investigations are made with the help of two‐terminal probe and an accurate LCR meter. The bulk impedance of mango has been measured to characterise raw and ripe fruits. Effective resistance and effective capacitance vs. frequency characteristics have been determined. The bulk effective resistances, of the ripe fruits, are found to be more than those of the raw fruits, in the frequency range of 1–6 kHz. In the same frequency range, effective capacitances of the raw fruits are found more than those of the ripe fruits. In the light of the data obtained, it can be said that the effective resistance may be used to differentiate between raw and ripe fruits in the frequency range of 1–6 kHz. 相似文献
13.
Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles 总被引:1,自引:0,他引:1
Naja G Halasz A Thiboutot S Ampleman G Hawari J 《Environmental science & technology》2008,42(12):4364-4370
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a common contaminant of soil and water at military facilities. The present study describes degradation of RDX with zerovalent iron nanoparticles (ZVINs) in water in the presence or absence of a stabilizer additive such as carboxymethyl cellulose (CMC) or poly(acrylic acid) (PAA). The rates of RDX degradation in solution followed this order CMC-ZVINs > PAA-ZVINs > ZVINs with k1 values of 0.816 +/- 0.067, 0.082 +/- 0.002, and 0.019 +/- 0.002 min(-1), respectively. The disappearance of RDX was accompanied by the formation of formaldehyde, nitrogen, nitrite, ammonium, nitrous oxide, and hydrazine by the intermediary formation of methylenedinitramine (MEDINA), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine), DNX (hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine), TNX (hexahydro-1,3,5-trinitroso-1,3,5-triazine). When either of the reduced RDX products (MNX or TNX) was treated with ZVINs we observed nitrite (from MNX only), NO (from TNX only), N2O, NH4+, NH2NH2 and HCHO. In the case of TNX we observed a new key product that we tentatively identified as 1,3-dinitroso-5-hydro-1,3,5-triazacyclo-hexane. However, we were unable to detect the equivalent denitrohydrogenated product of RDX and MNX degradation. Finally, during MNX degradation we detected a new intermediate identified as N-nitroso-methylenenitramine (ONNHCH2NHNO2), the equivalentof methylenedinitramine formed upon denitration of RDX. Experimental evidence gathered thus far suggested that ZVINs degraded RDX and MNX via initial denitration and sequential reduction to the corresponding nitroso derivatives prior to completed decomposition but degraded TNX exclusively via initial cleavage of the N-NO bond(s). 相似文献
14.
Electron transfer from zerovalent iron (Fe0) to targeted contaminants is affected by initial Fe0 composition, the oxides formed during corrosion, and surrounding electrolytes. We previously observed enhanced metolachlor destruction by Fe0 when iron or aluminum salts were present in the aqueous matrix and Eh/pH conditions favored formation of green rusts. To understand these enhanced destruction rates, we characterized changes in Fe0 composition during treatment of metolachlor with and without iron and aluminum salts. Raman microspectroscopy and X-ray diffraction (XRD) indicated that the iron source was initially coated with a thin layer of magnetite (Fe3O4), maghemite (gamma-Fe2O3), and wüstite (FeO). Time-resolved analysis indicated that akaganeite (beta-FeOOH) was the dominant oxide formed during Fe0 treatment of metolachlor. Goethite (alpha-FeOOH) and some lepidocrocite (gamma-FeOOH) formed when Al2(SO4)3 was present, while goethite and magnetite (Fe3O4) were identified in Fe0 treatments containing FeSO4. Although conditions favoring formation of sulfate green rust (GR(II); Fe6(OH)12SO4) facilitated Fe0-mediated dechlorination of metolachlor, only adsorption was observed when GR(II) was synthesized (without Fe0) in the presence of metolachlor and Eh/pH changed to favor Fe(III)oxyhydroxide or magnetite formation. In contrast, dechlorination occurred when magnetite or natural goethite was amended with Fe(II) (as FeSO4) at pH 8 and continued as long as additional Fe(II) was provided. While metolachlor was not dechlorinated by GR(II) itself during a 48-h incubation, the GR(II) provided a source of Fe(II) and produced magnetite (and other oxide surfaces) that coordinated Fe(II), which then facilitated dechlorination. 相似文献
15.
Nanoscale zerovalent iron (NZVI) rapidly transforms many environmental contaminants to benign products and is a promising in-situ remediation agent. To be effective, NZVI should form stable dispersions in water such that it can be delivered in water-saturated porous media to the contaminated area. Limited mobility of NZVI has been reported, however, attributed to its rapid aggregation. This study uses dynamic light scattering to investigate the rapid aggregation of NZVI from single nanoparticles to micrometer size aggregates, and optical microscopy and sedimentation measurements to estimate the size of interconnected fractal aggregates formed. The rate of aggregation increased with increasing particle concentration and increasing saturation magnetization (i.e., the maximum intrinsic magnet moment) of the particles. During diffusion limited aggregation the primary particles (average radius = 20 nm) aggregate to micrometer-size aggregates in only 10 min, with average hydrodynamic radii ranging from 125 nm to 1.2 microm at a particle concentration of 2 mg/L (volume fraction(phi= 3.2 x 10(-7)) and 60 mg/L (phi = 9.5 x 10(-6)), respectively. Subsequently, these aggregates assemble themselves into fractal, chain-like clusters. At an initial concentration of just 60 mg/L, cluster sizes reach 20-70 microm in 30 min and rapidly sedimented from solution. Parallel experiments conducted with magnetite and hematite, coupled with extended DLVO theory and multiple regression analysis confirm that magnetic attractive forces between particles increase the rate of NZVI aggregation as compared to nonmagnetic particles. 相似文献
16.
Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate 总被引:2,自引:0,他引:2
The usage of zerovalent iron (ZVI) activated persulfate to induce sulfate radical (SO(4)(-)·) oxidation of both aqueous and solid phase naphthalene (Nap) was investigated. It was determined that the removal of Nap particles occurred through an indirect route. Specifically, Nap released through dissolution from the pure Nap particles was subsequently oxidized in the aqueous phase by SO(4)(-)·. Rapid destruction of dissolved Nap created a greater concentration gradient between the solid and aqueous phases. This caused more Nap particles to be dissolved which were then available for the subsequent oxidative destruction of dissolved Nap. The rate constant (k(obs,Nap)) of ZVI activated persulfate degradation of dissolved Nap was determined to be 3.74 min(-1). The overall dissolution mass transfer coefficients (k(L)a) for the Nap particles were determined, 3.0 × 10(-2) min(-1) with initial 10 mg Nap in 40 mL water, and found to be proportional to the quantities of the Nap particles present. The results indicate that the k(obs,Nap) is much greater than the k(L)a. The net result of the dissolution of Nap particles and the destruction of dissolved Nap by oxidation was the removal of Nap particles. Sequential additions of ZVI at a lower concentration to slow down the formation of SO(4)(-)· can prevent the scavenging of SO(4)(-)· by ZVI and enhance the removal of Nap particles. The results of the mass balance analysis during the oxidized, aqueous and solid phases of Nap were consistent with experimental observations. 相似文献
17.
Marsalek B Jancula D Marsalkova E Mashlan M Safarova K Tucek J Zboril R 《Environmental science & technology》2012,46(4):2316-2323
Cyanobacteria pose a serious threat to water resources around the world. This is compounded by the fact that they are extremely resilient, having evolved numerous protective mechanisms to ensure their dominant position in their ecosystem. We show that treatment with nanoparticles of zerovalent iron (nZVI) is an effective and environmentally benign method for destroying and preventing the formation of cyanobacterial water blooms. The nanoparticles have multiple modes of action, including the removal of bioavailable phosphorus, the destruction of cyanobacterial cells, and the immobilization of microcystins, preventing their release into the water column. Ecotoxicological experiments showed that nZVI is a highly selective agent, having an EC(50) of 50 mg/L against cyanobacteria; this is 20-100 times lower than its EC(50) for algae, daphnids, water plants, and fishes. The primary product of nZVI treatment is nontoxic and highly aggregated Fe(OH)(3), which promotes flocculation and gradual settling of the decomposed cyanobacterial biomass. 相似文献
18.
We examined the corrosion products of zerovalent iron used in three column tests for removing arsenic from water under dynamic flow conditions. Each column test lasted 3-4 months using columns consisting of a 10.3-cm depth of 50:50 (w:w, Peerless iron:sand) in the middle and a 10.3cm depth of a sediment from Elizabeth City, NC, in both upper and lower portions of the 31-cm-long glass column (2.5 cm in diameter). The feeding solutions were 1 mg of As(V) L(-1) + 1 mg of As(III) L(-1) in 7 mM NaCl + 0.86 mM CaSO4 with or without added phosphate (0.5 or 1 mg of P L(-1)) and silicate (10 or 20 mg of Si L(-1)) at pH 6.5. Iron(II,III) hydroxycarbonate green rust (or simply, carbonate green rust) and magnetite were the major iron corrosion products identified with X-ray diffraction for the separated fractions (5 and 1 min sedimentation and residual). The presence of carbonate green rust was confirmed by scanning electron microscopy (hexagonal morphology) and FTIR-photoacoustic spectroscopy (interlayer carbonate stretching mode at 1352-1365 cm(-1)). X-ray photoelectron spectroscopy investigation revealed the presence of predominantly As(V) at the surface of corroded iron particles despite the fact that the feeding solution in contact with Peerless iron contained more As(III) than As(V) as a result of a preferential uptake of As(V) over As(III) by the Elizabeth City sediment. Extraction of separated corrosion products with 1.0 M HCI showed that from 86 to 96% of the total extractable As (6.9-14.6 g kg(-1)) was in the form of As(V) in agreement with the XPS results. Combined microscopic and macroscopic wet chemistry results suggest that sorbed As(III) was partially oxidized by the carbonate green rust at the early stage of iron corrosion. The column experiments suggest that either carbonate green rust is kinetically favored or is thermodynamically more stable than sulfate green rust in the studied Peerless iron corrosion systems. 相似文献
19.
Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron 总被引:1,自引:0,他引:1
Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), especially the 2,3,7,8-substituted congeners, are extremely toxic, persistent, and recalcitrant to remediation. Dechlorination of PCDD/Fs by zerovalent iron (ZVI) is thermodynamically feasible, but useful rates of reaction have not been previously reported. Here we show that ZVI (both micro- and nanosized ZVI, without palladization) dechlorinates PCDD congeners with four or more chlorines in aqueous systems, but the reaction is too slow to achieve complete dechlorination within a practical period of time. In contrast, palladized nanosized ZVI (Pd/nFe) rapidly dechlorinates PCDDs, including the mono- to tetra-chlorinated congeners. The rate of 1,2,3,4-tetrachloro dibenzo-p-dioxin (1,2,3,4-TeCDD) degradation using Pd/nFe was about 3 orders of magnitude faster than 1,23,4-TeCDD degradation using unpalladized ZVI. The distribution of products obtained from dechlorination of 1,2,3,4-TeCDD suggests that palladization shifts the pathways of contaminant degradation toward a greater role of H atom transfer rather than electron transfer. 相似文献
20.
While a high efficiency of contaminant removal by nanoscale zerovalent iron (nZVI) has often been reported for several contaminants of great concern, including aqueous arsenic species, the transformations and translocation of contaminants at and within the nanoparticles are not clearly understood. By analysis using in situ time-dependent X-ray absorption spectroscopy (XAS) of the arsenic core level for nZVI in anoxic As(III) solutions, we have observed that As(III) species underwent two stages of transformation upon adsorption at the nZVI surface. The first stage corresponds to breaking of As-O bonds at the particle surface, and the second stage involves further reduction and diffusion of arsenic across the thin oxide layer enclosing the nanoparticles, which results in arsenic forming an intermetallic phase with the Fe(0) core. Extended X-ray absorption fine-structure (EXAFS) data from experiments conducted at different iron/arsenic ratios indicate that the reduced arsenic species tend to be enriched at the surface of the Fe(0) core region and had limited mobility into the interior of the metal core within the experimental time frame (up to 22 h). Therefore, there was an accumulation of partially reduced arsenic at the Fe(0)/oxide interface when a relatively large arsenic content was present in the solid phase. These results illuminate the role of intraparticle diffusion and reduction in affecting the chemical state and spatial distribution of arsenic in nZVI materials. 相似文献