首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the influence of two types of target,skin tissue and cell culture medium,with different permittivities on a k Hz helium atmospheric pressure plasma jet (APPJ) during its application for wound healing.The basic optical–electrical characteristics,the initiation and propagation and the emission spectra of the He APPJ under different working conditions are explored.The experimental results show that,compared with a jet freely expanding in air,the diameter and intensity of the plasma plume outside the nozzle increase when it interacts with the pigskin and cell culture medium targets,and the mean velocity of the plasma bullet from the tube nozzle to a distance of 15 mm is also significantly increased.There are also multiple increases in the relative intensity of OH (A~2Σ?→?X~2Π) and O (3p~5S–3s~5S) at a position 15 mm away from nozzle when the He APPJ interacts with cell culture medium compared with the air and pigskin targets.Taking the surface charging of the low permittivity material capacitance and the strengthened electric field intensity into account,they make the various characteristics of He APPJ interacting with two different targets together.  相似文献   

2.
An atmospheric pressure plasma jet (APPJ) using radio-frequency (13.56 MHz) power has been developed to produce homogeneous glow discharge at low temperature. With optical emission spectroscopy, we observed the excited species (atomic helium, atomic oxygen and metastable oxygen) generated in this APPJ and their dependence on gas composition ratio and RF power. O and O2(b1∑g^+) are found in the effluent outside the jet by measuring the emission spectra of effluent perpendicular to the jet. An interesting phenomenon is found that there is an abnormal increase of O emission intensity (777.4 nm) between 10 mm and 40 mm away from the nozzle. This observation result is very helpful in practical operation.  相似文献   

3.
UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X)(0–0)band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source.The effect of the addition of molecular gases N_2 and O_2 to He plasma jets on OH generation was studied.Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species.Stark broadening of the hydrogen Balmer emission line(H_β)was used to estimate the electron density nein the jets.For both He/N_2 and He/O_2 jets, newas estimated to be on the order of 10~(15)cm~(-3).The effects of plasma power and gas flow rate were also studied.With increase in N_2 and O_2 flow rates, netended to decrease.Gas temperature in the He/O_2 plasma jets was elevated compared to the temperatures in the pure He and He/N_2 plasma jets.The highest OH densities in the He/N_2 and He/O_2 plasma jets were determined to be 1.0?×10~(16)molecules/cm~3 at x?=?4 mm(from the jet orifice)and 1.8?×?10~(16)molecules/cm~3 at x=3 mm, respectively.Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions.The presence of strong emissions of the N_2~+ bands in both He/N_2 and He/O_2 plasma jets, as against the absence of the N_2~+ emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N_2~+ in these He plasma jets.  相似文献   

4.
A neon plasma jet was generated in air,driven by a 9 kHz sinusoidal power supply.The characteristics of the plasma plume and the optical spectra with plasma propagation for different applied voltages were investigated.By increasing the applied voltage,the plasma plume first increases and then retracts to become short and bulky.The shortened effect of Ne plasma plume(about 10 mm) for the further voltage increasing is more apparent than that of He(about3 mm) and Ar(about 1 mm).Emission intensity of the N_2(337 nm) increases with the applied voltage,gradually substituting the emission intensity of Ne(702 nm and 585 nm) as the noticeable radiation.At the nozzle opening,the Ne(702 nm) emission dominates,while the Ne(585 nm)emission is most noticeable around the tip of the plasma plume.The spatial distribution of the three spectral lines indicates that Ne(702 nm) emission decreases dramatically with plasma propagation while Ne(585 nm) and N_2(337 nm) emissions reach their maxima at the middle of the plasma plume.The results indicate that the Ne(702 nm) emission is much more sensitive to the average electron temperature and the density of the high-energy electrons,so it changes greatly at the tube nozzle and little at the tip region as the voltage increases.The population of high-energy electrons,the average electron temperature,the collision with air molecules and the Penning effect between Ne metastables and air molecules may explain their different variations with plasma propagating and voltage increasing.  相似文献   

5.
Non-thermal equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications,and the uniform APPJ is more favored.Glow discharge is one of the most effective methods to obtain the uniform discharge.Compared with the glow dielectric barrier discharge (DBD) in atmospheric pressure,pure helium APPJ shows partial characteristics of both the glow discharge and the streamer.In this paper,considering the influence of the Penning effect,the electrical and optical properties of He APPJ and Ar/NH3 APPJ were researched.A word "Glow-like APPJ" is used to characterize the uniformity of APPJ,and it was obtained that the basic characteristics of the glow-like APPJ are driven by the kHz AC high voltage.The results can provide a support for generating uniform APPJ,and lay a foundation for its applications.  相似文献   

6.
An atmospheric pressure plasma jet (APPJ) in Ar with various grounded electrode arrangements is employed to investigate the effects of electrode arrangement on the characteristics of the APPJ.Electrical and optical methods are used to characterize the plasma properties.The discharge modes of the APPJ with respect to applied voltage are studied for grounded electrodepositions of 10 mm,40 mm and 80 mm,respectively,and the main discharge and plasma parameters are investigated.It is shown that an increase in the distance between the grounded electrode and high-voltage electrode results in a change in the discharge modes and discharge parameters.The discharges transit from having two discharge modes,dielectric barrier discharge (DBD) and jet,to having three,corona,DBD and jet,with increase in the distance from the grounded to the high-voltage electrodes.The maximum length of the APPJ reaches 3.8 cm at an applied voltage of 8 kV.The discharge power and transferred charges and spectral line intensities for species in the APPJ are influenced by the positions of the grounded electrode,while there is no obvious difference in the values of the electron excited temperature (EET) for the three grounded electrode positions.  相似文献   

7.
In the background of electrothermal-chemical (ETC) emission,an investigation has been conducted on the characteristics of a freely expanding pulsed plasma jet in air.The evolutionary process of the plasma jet is experimentally investigated using a piezoelectric pressure sensor and a digital high-speed video system.The variation relation in the extended volume,axial displacement and radial displacement of the pulsed plasma jet in atmosphere with time under different discharge voltages and jet breaking pressures is obtained.Based on experiments,a two-dimensional axisymmetric unsteady model is established to analyze the characteristics of the two-phase interface and the variation of flow-field parameters resulting from a pulsed plasma jet into air at a pressure of 1.5-3.5 MPa under three nozzle diameters (3 mm,4 mm and 5 ram,respectively).The images of the plasma jet reveal a changing shape process,from a quasiellipsoid to a conical head and an elongated cylindrical tail.The axial displacement of the jet is always larger than that along the radial direction.The extended volume reveals a single peak distribution with time.Compared to the experiment,the numerical simulation agrees well with the experimental data.The parameters of the jet field mutate at the nozzle exit with a decrease in the parameter pulse near the nozzle,and become more and more gradual and close to environmental parameters.Increasing the injection pressure and nozzle diameter can increase the parameters of the flow field such as the expansion volume of the pulsed plasma jet,the size of the Mach disk and the pressure.In addition,the turbulent mixing in the expansion process is also enhanced.  相似文献   

8.
In this study,we investigated the effects of the quartz tube diameter,air flow rate,and applied voltage on the characteristics of an air plasma jet to obtain the optimized discharge characteristics.The physicochemical properties and concentration of reactive oxygen and nitrogen species(RONS)in plasma-activated medium(PAM)were characterized to explore their chemical activity.Furthermore,we investigated the inactivation effect of air plasma jet on tumour cells and their corresponding inactivation mechanism.The results show that the tube diameter plays an important role in sustaining the voltage of the air plasma jet,and the gas flow rate affects the jet length and discharge intensity.Additionally,the air plasma jet discharge displays two modes,namely,ozone and nitrogen oxide modes at high and low gas flow rates,respectively.Increasing the voltage increases the concentration of reactive species and the length of discharge.By evaluating the viability of A549 cells under different parameters,the optimal treatment conditions were determined to be a quartz tube diameter of 4 mm,gas flow rate of 0.5 SLM,and voltage of 18 kV.Furthermore,an air plasma jet under the optimized conditions effectively enhanced the chemical activity in PAM and produced more aqueous RONS.The air plasma jet induced significant cytotoxicity in A549 cancer cells after plasma treatment.H2O2 and NO2 are regarded as key factors in promoting cell inactivation.The present study demonstrates the potential use of tumour cell therapy by atmospheric air PAM,which aids a better understanding of plasma liquid chemistry.  相似文献   

9.
Atmospheric pressure plasma jet (APPJ) was used to clean nitrogen-containing carbon films (C–N) fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sichuan University (SCU-PSI). The properties of the contaminated films on the surface of pristine and He-plasma pre-irradiated tungsten matrix, such as morphology, crystalline structure, element composition and chemical structure were characterized by scanning electron microscopy, grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy. The experimental results revealed that the removal of C–N film with a thickness of tens of microns can be realized through APPJ cleaning regardless of the morphology of the substrates. Similar removal rates of 16.82 and 13.78 μm min−1 were obtained for C–N films deposited on a smooth pristine W surface and rough fuzz-covered W surface, respectively. This is a remarkable improvement in comparison to the traditional cleaning method. However, slight surface oxidation was found after APPJ cleaning, but the degree of oxidation was acceptable with an oxidation depth increase of only 3.15 nm. Optical emission spectroscopy analysis and mass spectrometry analysis showed that C–N contamination was mainly removed through chemical reaction with reactive oxygen species during APPJ treatment using air as the working gas. These results make APPJ cleaning a potentially effective method for the rapid removal of C–N films from the wall surfaces of fusion devices.  相似文献   

10.
In this work, a typical pin-to-pin plasma synthetic jet in static air is excited by a pulsed DC power supply. The influences of the pulse rising time, the amplitude and the repetition frequency of the pulse voltage on the jet flow have been investigated. First, using a high-speed Schlieren imaging technique, the induced shock waves and the fast jet flow generated by the plasma synthetic jet are characterized. With a deposited energy of 44 mJ per pulse, the velocity of the shock wave and the maximum velocity of the jet flow reach 320 m s−1 and 100 m s−1, respectively. Second, when the applied voltage increases from 12.8 kV to 16 kV, the maximum jet velocity increases from 66 m s−1 to 93 m s−1. On the other hand, as the pulse rising time varies from 50 ns to 500 ns, or the pulse repetition frequency increases from 5 Hz to 40 Hz, the jet velocity induced by the plasma synthetic jet is weakly dependent. In addition, a comparative study of the plasma synthetic jets using three commercial pulsed power supplies (XJ-15, NPG- 18, and PG-30) is implemented. It reveals that the maximum jet velocity of 120 m s−1 is obtained in the case of PG-30, with the longest pulse rising time and the lowest breakdown voltage, while the maximum velocity of 33 m s−1 is detected in the case of NPG-18, even though it has the shortest pulse rising time and the highest breakdown voltage.  相似文献   

11.
为提高UO3活性、降低铀转化生产成本,以硝酸铀酰溶液为原料、丙烷燃烧产生的高温气体为热源,采用高压喷雾技术制备了高活性UO3粉末。探讨了硝酸铀酰溶液中的铀浓度和反应温度对UO3活性的影响,并分析了高压喷嘴结构对UO3粉末粒度分布的影响。实验结果表明,在反应温度400 ℃、反应压力-100 Pa等控制条件下,采用雾化干燥技术制备的UO3比表面积可达18 m2/g,粉末粒径在15~50 μm之间,说明制备的UO3活性较好。其原因是高温高速气流与雾化液滴横向接触时,不仅发生了高速气体对液滴的撕裂作用,也存在高温条件下水气化导致液滴破裂的过程。同时也显示该工艺具有潜在的工业应用价值。  相似文献   

12.
In this paper, volume barrier discharge with different gap distances is added on the discharge border of high-voltage electrode of annular surface barrier discharge for generating volume added surface barrier discharge (V-SBD) excited by bipolar nanosecond high-voltage pulse power in atmospheric air. The excited V-SBDs consist of surface barrier discharge (d=0 mm) and volume added surface barrier discharges (d=2 mm and 3 mm). The optical emission spectra are recorded for calculating emission intensities of N2 (C 3u →B3Πg ) and N2+ (B 2Σu+ → X 2Σg+ ), and simulating rotational and vibrational temperatures. The influences of gap distance of V-SBD on emission intensity and plasma temperature are also investigated and analyzed. The results show that d=0 mm structure can excite the largest emission intensity of N 2 (C 3 Πu →B 3Πg ), while the existence of volume barrier discharge can delay the occurrence of the peak value of the emission intensity ratio of N2+ (B 2Σu+ → X 2Σg+ )/N 2(C3Πu →B3Πg ) during the rising period of the applied voltage pulse and weaken it during the end period. The increasing factor of emission intensity is effected by the pulse repetition rate. The d=3 mm structure has the highest threshold voltage while it can maintain more emission intensity of N2(C3 Π u →B 3Πg ) than that of d=2 mm structure. The structure of d=2 mm can maintain more increasing factor than that of the d=3 mm structure with varying pulse repetition rate. Besides, the rotational temperatures of three V-SBD structures are slightly affected when the gap distance and pulse repetition rate vary. The vibrational temperatures have decaying tendencies of all three structures with the increasing pulse repetition rate.  相似文献   

13.
Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A¬X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017± 0.2×1017 cm −3 . This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm −3 .  相似文献   

14.
In this paper, the radial temperature distributions of the blown CO_2 arcs in a model gas circuit breaker were investigated by optical emission spectroscopy methods. The CO_2 flows with different flow rates(50, 100 and 150 1 min~(-1)) were created to axially blow the arcs burning in a polymethyl methacrylate(PMMA) nozzle. Discharges with different arc currents(200 and 400A) were conducted in the experiment. The absolute intensity method was applied for a carbon ionic line of 657.8 nm to obtain the radial temperature profiles of the arc columns at a cross-section 1 mm above the nozzle. The calibration for the intensity of the CⅡ 657.8 nm line was achieved by the Fowler–Milne method with the help of an oxygen atomic line of 777.2 nm.The highest temperature obtained in the arc center was up to 19 900 K when the arc current was 400 A and the CO_2 flow rate was 50 1 min~(-1), while the lowest temperature in the arc center was about 15 900 K when the arc current was 200 A and the CO_2 flow rate was 150 1min~(-1). The results indicate that as the arc current increases, the temperature in the arc center would also increase apparently, and a larger gas flow rate would lead to a lower central temperature in general. It can also be found that the influence of the CO_2 flow rate on the arc temperature was much less than that of the arc current under the present experimental conditions. In addition,higher temperature in the arc center would cause a sharper temperature decrease from the central region towards the edge.  相似文献   

15.
In the present study, a coaxial transmission line resonator is constructed, which is always capable of generating cold microwave plasma jet plumes in ambient air in spite of using argon, nitrogen, or even air, respectively. Although the different kinds of working gas induce the different discharge performance, their ionization processes all indicate that the ionization enhancement has taken place twice in each pulsed periods, and the electron densities measured by the method of microwave Rayleigh scattering are higher than the amplitude order of 1018 m−3. The tail region of plasma jets all contain a large number of active particles, like NO, O, emitted photons, etc, but without O3. The formation mechanism and the distinctive characteristics are attributed to the resonance excitation of the locally enhanced electric fields, the ionization wave propulsion, and the temporal and spatial distribution of different particles in the pulsed microwave plasma jets. The parameters of plasma jet could be modulated by adjusting microwave power, modulation pulse parameters (modulation frequency and duty ratio), gas type and its flow rate, according to the requirements of application scenarios.  相似文献   

16.
The spectral characteristic of laser-induced plasma in soil was studied in this work, laser-induced breakdown spectroscopy was used to analyze the spectral characteristic of plasma under the condition of different time delays and irradiances. Moreover, the time evolution characteristics of plasma temperature and electron density were discussed. Within the time delay range of 0-5 μs,the spectral intensity of the characteristic lines of Si I: 288.158 nm, Ti I: 336.126 nm, Al I:394.400 nm and Fe I: 438.354 nm of the four main elements in two kinds of national standard soil decayed exponentially with time. The average lifetime of the spectral lines was nearly 1.56 μs. Under the condition of different time delays, the spectral intensity of Pb I: 405.78 nm in soil increased linearly with laser energy. However, the slope between the spectral intensity and laser energy decreased exponentially with the increase in time delay, from 4.91 to 0.99 during 0-5 μs. The plasma temperature was calculated by the Boltzmann plot method and the electron density was obtained by inversion of the full width at half maximum of the spectrum. The plasma temperature decreased from 8900 K to 7800 K and the electron density decreased from 1.5 × 10~(17) cm~(-3) to 7.8 × 10~(16) cm~(-3) in the range of 0-5 μs.  相似文献   

17.
In this paper,the collective effects of combining heterogeneous Ag/TiO_2 nanocomposite catalyst with the byproducts(primarily the irradiation and the O_3 species) of an atmospheric pressure plasma jet(APPJ) system on the degradation of methyl orange(MO) were explored.The heterostructured Ag/TiO_2 nanocomposite was achieved via decorating the Ag quantum dots(QDs) on the commercially available TiO_2catalyst(P25) through a hydrothermal method.The x-ray diffraction analysis of the nanocomposite catalyst showed the diffraction peaks at 44.3°,64.4°,and 77.5°,corresponding to the Ag planes of(200),(220) and(311),respectively.The high resolution transmission electron microscope characterization of the nanocomposite catalyst indicated that the Ag QDs with an average diameter of 5 nm were homogeneously distributed on the P25 surface.The experimental results on the MO photodegradation showed that the APPJ irradiation had a marginal effect on the cleavage of the MO molecules.When the Ag/TiO_2 nanocomposite catalyst was used,the photodegradation rate of MO increased about 5 times.When both the APPJ byproducts and the Ag/TiO_2 nanocomposite catalyst were used,however,over 90% of the MO in the tested solution was cleaved within 15 min,and the energy efficiency was about 0.6 g/k W h.Moreover,an optimal Ag dosage value was determined(6 wt%).The catalytic results indicated that combining the DBD plasma byproducts with heterogeneous nanocomposite catalysts may be an effect protocol for decreasing the application cost of the DBD system and mitigating the environment pollution by organic dyes in the textile industry.  相似文献   

18.
Photo ionization plays a critical role in the formation and propagation of atmospheric pressure plasma jet plumes. But in experiments, it is very difficult to observe the photo ionization due to its relative lower density of photo electrons. In the present study, we develop a portable cold air plasma jet device and observe the ionization wave in a dc spark air plasma jet. The discharge images acquired by an ICCD camera show that the ionization wave front performs as a quickly moving bright ball. Breakdown could take place at another side of the quartz plate or pork tissue layer(6 mm thick), which suggests that the ionization should be attributed to photo ionization.The laser schlieren images indicate there is propagation of a shock wave along with the plasma bullet. Based on the photo ionization theory and the photo-electric measurement, the direct photo ionization and multistage photo ionization are the main factors in charge of generating the cold air plasma jet. In addition, the plasma jet outside of the cathode nozzle is colder than 320 K and can be touched safely by a human. In view of the plasma jet including a large amount of active particles, such as NO, O, OH, emitted photons, etc, the proposed portable cold air plasma jet device could be qualified for plasma bio-medicine applications.  相似文献   

19.
Non-thermal plasma surface modification for epoxy resin(EP)to improve the insulation properties has wide application prospects in gas insulated switchgear and gas insulatedtransmission line.In this paper,a pulsed Ar dual dielectrics atmospheric-pressure plasma jet(APPJ)was used for Si C_xH_yO_zthin film deposition on EP samples.The film deposition was optimized by varying the treatment time while other parameters were kept at constants(treatment distance:10 mm,precursor flow rate:0.6 l min~(-1),maximum instantaneous power:3.08 k W and single pulse energy:0.18 m J).It was found that the maximum value of flashover voltages for negative and positive voltage were improved by 18%and 13%when the deposition time was3 min,respectively.The flashover voltage reduced as treatment time increased.Moreover,all the surface conductivity,surface charge dissipation rate and surface trap level distribution reached an optimal value when thin film deposition time was 3 min.Other measurements,such as atomic force microscopy and scanning electron microscope for EP surface morphology,Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy for EP surface compositions,optical emission spectra for APPJ deposition process were carried out to better understand the deposition processes and mechanisms.The results indicated that the original organic groups(C–H,C–C,C=O,C=C)were gradually replaced by the Si containing inorganic groups(Si–O–Si and Si–OH).The reduction of C=O in ester group and C=C in p-substituted benzene of the EP samples might be responsible for shallowing the trap level and then enhancing the flashover voltage.However,when the plasma treatment time was longer than 3 min,the significant increase of the surface roughness might increase the trap level depth and then deteriorate the flashover performance.  相似文献   

20.
Active control of the local environment of the cold atmospheric plasma (CAP) jet is of great importance in actual applications since the CAP operates in an open atmosphere with the inevitable entrainment of the surrounding cold air. In this paper, the solid shielding effects of the cylindrical quartz tubes with different inner diameters on the characteristics of the CAP jets driven by a radio-frequency (RF) power supply are studied experimentally. The experimental results show that the total length of the shielded plasma jet can be increased significantly by an appropriate combination of the quartz tube inner diameter and that of the plasma generator nozzle exit with other parameters being unchanged. This phenomenon may be qualitatively attributed to the loss of diffusion of the charged particles in the radial direction under different inner diameters of the quartz tubes. Compared with the plasma free jet, the plasma shielding jet is produced with optimized parameters including longer plasma jet length, higher concentrations of chemically reactive species, higher rotational, vibrational, and electron excitation temperatures when the inner diameters of the solid shielding tube and the generator nozzle exit are the same. A maximum plasma jet length of 52.0 cm is obtained in contrast to that of 5.0 cm of the plasma free jet in this study. The experimental results indicate that the solid shielding effect provides a new method for the active control of the local environment of the RF-CAP jet operating in an open atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号