首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来,深度学习取得了重大突破,融合深度学习技术的神经机器翻译逐渐取代统计机器翻译,成为学术界主流的机器翻译方法。然而,传统的神经机器翻译将源端句子看作一个词序列,没有考虑句子的隐含语义信息,使得翻译结果与源端语义不一致。为了解决这个问题,一些语言学知识如句法、语义等被相继应用于神经机器翻译,并取得了不错的实验效果。语义角色也可用于表达句子语义信息,在神经机器翻译中具有一定的应用价值。文中提出了两种融合句子语义角色信息的神经机器翻译编码模型,一方面,在句子词序列中添加语义角色标签,标记每段词序列在句子中担当的语义角色,语义角色标签与源端词汇共同构成句子词序列;另一方面,通过构建源端句子的语义角色树,获取每个词在该语义角色树中的位置信息,将其作为特征向量与词向量进行拼接,构成含语义角色信息的词向量。在大规模中-英翻译任务上的实验结果表明,相较基准系统,文中提出的两种方法分别在所有测试集上平均提高了0.9和0.72个BLEU点,在其他评测指标如TER(Translation Edit Rate)和RIBES(Rank-based Intuitive Bilingual Evaluation Score)上也有不同程度的性能提升。进一步的实验分析显示,相较基准系统,文中提出的融合语义角色的神经机器翻译编码模型具有更佳的长句翻译效果和翻译充分性。  相似文献   

2.
机器翻译研究如何利用计算机实现自然语言之间的自动翻译,是人工智能和自然语言处理领域的重要研究方向之一.近年来,基于深度学习的神经机器翻译方法获得迅速发展,目前已取代传统的统计机器翻译成为学术界和工业界新的主流方法.首先介绍神经机器翻译的基本思想和主要方法,然后对最新的前沿进展进行综述,最后对神经机器翻译的未来发展方向进行展望.  相似文献   

3.
亢晓勉  宗成庆 《软件学报》2022,33(10):3806-3818
篇章翻译方法借助跨句的上下文信息以提升篇章的翻译质量.篇章具有结构化的语义信息,可以形式化地表示为基本篇章单元之间的依存关系.但是目前的神经机器翻译方法很少利用篇章的结构信息.为此,提出了一种篇章翻译模型,能够在神经机器翻译的编码器-解码器框架中显式地建模基本篇章单元切分、篇章依存结构预测和篇章关系分类任务,从而得到结构信息增强的篇章单元表示.该表示分别通过门控加权和层次注意力的方式,与编码和解码的状态向量进行融合.此外,为了缓解模型在测试阶段对篇章分析器的依赖,在训练时采用多任务学习的策略,引导模型对翻译任务和篇章分析任务进行联合优化.在公开数据集上的实验结果表明,所提出的方法能够有效地建模和利用篇章单元间的依存结构信息,从而达到提升译文质量的目的.  相似文献   

4.
机器翻译主要研究如何将源语言翻译为目标语言,对于促进民族之间的交流具有重要意义。目前神经机器翻译凭借翻译速度和译文质量成为主流的机器翻译方法。为更好地进行脉络梳理,首先对机器翻译的历史和方法进行研究,并对基于规则的机器翻译、基于统计的机器翻译和基于深度学习的机器翻译三种方法进行对比总结;然后引出神经机器翻译,并对其常见的类型进行讲解;接着选取多模态机器翻译、非自回归机器翻译、篇章级机器翻译、多语言机器翻译、数据增强技术和预训练模型六个主要的神经机器翻译研究领域进行重点介绍;最后从低资源语言、上下文相关翻译、未登录词和大模型四个方面对神经机器翻译的未来进行了展望。通过系统性的介绍以更好地理解神经机器翻译的发展现状。  相似文献   

5.
基于Transformer的序列转换模型是当前性能最优的机器翻译模型之一.该模型在生成机器译文时,通常从左到右逐个生成目标词,这使得当前位置词的生成不能利用译文中该词之后未生成词的信息,导致机器译文解码不充分从而降低译文质量.为了缓解上述问题,该文提出了基于重解码的神经机器翻译模型,该模型将已生成的机器译文作为目标语言...  相似文献   

6.
本文基于神经机器翻译提出了英语语法错误纠正方法,并以实验进行了验证分析,结果表明,利用sampling解码策略的back-translation数据增强方法,提高了模型纠错性能;通过反向模型生成伪错误句子时,sampling解码策略效果更好;对抗训练有利于反向模型英语语法错误生成,保障了伪错误-纠正平行句对真实性,且推...  相似文献   

7.
邹德芳  胡秦斌 《计算机仿真》2021,(2):344-347,476
针对传统模型无法有效处理不同语言的差异性,出现源语言语法信息丢失、翻译内容欠佳的问题,构建出一种基于树到串模型强化的神经机器翻译模型.获取传统神经机器翻译模型的解码器与编码器的工作原理与运行流程,采用源句法分析树、目标串和源端与目标端文本串之间的对齐信息等模块,架构树到串强化模型,利用GHKM算法提取翻译规则优化目标函...  相似文献   

8.
对于句子级别的神经机器翻译,由于不考虑句子所处的上下文信息,往往存在句子语义表示不完整的问题.该文通过依存句法分析,对篇章中的每句话提取有效信息,再将提取出的信息,补全到源端句子中,使得句子的语义表示更加完整.该文在汉语-英语语言对上进行了实验,并针对篇章语料稀少的问题,提出了在大规模句子级别的平行语料上的训练方法.相...  相似文献   

9.
基于神经网络模型的蒙汉机器翻译严格采用编码器-解码器的序列建模方式,不能有效利用句法信息以及语言的层次结构信息.为将句法结构信息融入蒙汉机器翻译以提高其翻译性能,提出在源语言端采用双编码器,同时对源句和由源句解析而来的句法依存树进行编码;由于蒙汉机器翻译中经常会出现未登录词问题,因此将使用字节对编码技术预处理蒙古语.为解决机器翻译中的过度矫正问题,在训练阶段,模型以一定的概率从正确标注的序列中和预测生成的序列中采样上下文单词.在 120 万蒙汉平行语料的实验中证明,该方法相较于传统的BiRNN和CNN,BLEU值分别提高了2.69 和2.09.  相似文献   

10.
对于句子级别的神经机器翻译,由于不考虑句子所处的上下文信息,往往存在句子语义表示不完整的问题。该文通过依存句法分析,对篇章中的每句话提取有效信息,再将提取出的信息,补全到源端句子中,使得句子的语义表示更加完整。该文在汉语-英语语言对上进行了实验,并针对篇章语料稀少的问题,提出了在大规模句子级别的平行语料上的训练方法。相比于基准系统,该文提出的方法获得了1.47个BLEU值的提高。实验表明,基于补全信息的篇章级神经机器翻译,可以有效地解决句子级别神经机器翻译语义表示不完整的问题。  相似文献   

11.
神经机器翻译是目前机器翻译领域最热门的研究方法。和统计机器翻译相比,神经机器翻译在语料丰富的语种上可以取得非常好的结果,但是在资源比较稀缺的语种上表现一般。该文利用数据增强技术对资源贫乏语种的训练数据进行扩充,以此增强神经机器翻译的泛化能力。该文在藏汉、汉英两种语言对上进行了实验,当训练数据规模只有10万平行句对时,相较于基准系统,在两种语言对上均获得了4个BLEU值的提高。实验表明,数据增强技术可以有效地解决神经机器翻译因为训练数据太少而导致的泛化能力不足问题。  相似文献   

12.
无监督神经机器翻译仅利用大量单语数据,无需平行数据就可以训练模型,但是很难在2种语系遥远的语言间建立联系。针对此问题,提出一种新的不使用平行句对的神经机器翻译训练方法,使用一个双语词典对单语数据进行替换,在2种语言之间建立联系,同时使用词嵌入融合初始化和双编码器融合训练2种方法强化2种语言在同一语义空间的对齐效果,以提高机器翻译系统的性能。实验表明,所提方法在中-英与英-中实验中比基线无监督翻译系统的BLEU值分别提高2.39和1.29,在英-俄和英-阿等单语实验中机器翻译效果也显著提高了。  相似文献   

13.
14.
为提升维汉机器翻译模型的翻译能力,该文提出使用多编码器多解码器的结构,搭建大规模的维汉神经网络机器翻译模型。相比于单编码器单解码器的浅层的小模型,多编码器多解码器模型具有多个编码器,可以对源语言进行多层次、多视角的压缩表示;同时具有多个解码器,可以增强目标语言的生成能力。实验证明,在大规模的训练数据上,使用该方法搭建的大规模维汉神经网络机器翻译模型,译文质量可以大幅度地超过基于短语的统计机器翻译模型和基本的神经网络翻译模型。该文还针对维汉翻译源端语言和目标端语言的翻译单元粒度进行了实验,发现维吾尔语端使用字节对编码单元、汉语端使用字单元,可以消除对汉语分词器的依赖,做到和双端都使用字节对编码单元可比的效果。  相似文献   

15.
编码器-解码器结构是神经机器翻译最常用的一种框架,许多新型结构都基于此框架进行设计以改善翻译性能。其中,深度自注意力网络是非常出色的一种网络结构,其利用了自注意力机制来捕获全局的语义信息。然而,这种网络却不能有效地区分每个单词的相对位置,例如,依赖单词究竟位于目标单词的左边还是右边,也不能够捕获当前单词的局部语义。为了缓解这类问题,该文提出了一种新型的注意力机制,叫做混合注意力机制。该机制包含了对自注意力网络设计的多种不同的特定掩码来获取不同的语义信息,例如,全局和局部信息,以及左向或者右向信息。最后,该文提出了一个压缩门来融合不同类型的自注意力网络。在三个机器翻译数据集上的实验结果表明,该文方法能够取得比深度自注意力网络更好的结果。  相似文献   

16.
针对传统循环神经网络和卷积神经网络的缺点,搭建完全基于多头自注意力机制的Transformer蒙汉神经机器翻译模型。实验结果表明,该模型比基于LSTM的蒙汉翻译模型提高了9个BLEU值左右。这说明Transformer翻译模型在句子语义提取和语义表达方面优于LSTM翻译模型。同时在语料预处理阶段,还对中蒙文语料进行了不同粒度的切分。通过实验对比分析,蒙文进行BPE处理后的翻译结果优于对中文单独使用分词处理的结果;在较小语料库中,对中文进行分字处理效果优于分词效果。  相似文献   

17.
汪琪  段湘煜 《计算机科学》2018,45(11):226-230
现有神经机器翻译模型普遍采用的注意力机制是基于单词级别的,文中通过在注意力机制上执行多层卷积,从而将注意力机制从基于单词的级别提高到基于短语的级别。经过卷积操作后的注意力信息将愈加明显地体现出短语结构性,并被用于生成新的上下文向量,从而将新生成的上下文向量融入到神经机器翻译框架中。在大规模的中-英测试数据集上的实验结果表明,基于注意力卷积的神经机翻译模型能够很好地捕获语句中的短语结构信息,增强翻译词前后的上下文依赖关系,优化上下文向量,提高机器翻译的性能。  相似文献   

18.
英汉机器翻译中的语义分析   总被引:2,自引:0,他引:2  
  相似文献   

19.
随着国际交流的增加,有必要对机器翻译模型进行研究,以提高英语翻译的质量。研究开发了一个基于分层先验模型结构的神经机器翻译框架模型,并利用定向动态路由对其进行改进。实验结果表明,FRNN+PRNN模型的翻译性能得到了大幅提升,优化后模型在测试集MT04、MT05、MT06上面的翻译结果分值分别为48.13、45.98、42.85,评分值远远高于RNMT模型和优化前模型。优化后模型在人工和自动评价中的翻译质量分值均最高,具有最高的翻译质量和最少的遗漏、重复翻译;NMT、优化前模型、优化后模型的CDR值分别为0.80、0.76、0.73,说明优化后模型具有很好的翻译忠实度和翻译质量。  相似文献   

20.
神经机器翻译由于无法完全学习源端单词语义信息,往往造成翻译结果中存在着大量的单词翻译错误。该文提出了一种融入单词翻译用以增强源端信息的神经机器翻译方法。首先使用字典方法找到每个源端单词对应的目标端翻译,然后提出并比较两种不同的方式,用以融合源端单词及其翻译信息: ①Factored 编码器: 单词及其翻译信息直接相加; ②Gated 编码器: 通过门机制控制单词翻译信息的输入。基于目前性能最优的基于自注意力机制的神经机器翻译框架Transformer,在中英翻译任务的实验结果表明,与基准系统相比,该文提出的两种融合源端单词译文的方式均能显著提高翻译性能,BLEU值获得了0.81个点的提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号