首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extreme ultraviolet(EUV) spectra emitted from low-Z impurity ions in the wavelength range of10–500 ? were observed in Experimental Advanced Superconducting Tokamak(EAST)discharges. Several spectral lines from K-and L-shell partially ionized ions were successfully observed with sufficient spectral intensities and resolutions for helium, lithium, boron, carbon,oxygen, neon, silicon and argon using two fast-time-response EUV spectrometers of which the spectral intensities are absolutely calibrated based on the intensity comparison method between visible and EUV bremsstrahlung continua. The wavelength is carefully calibrated using wellknown spectra. The lithium, boron and silicon are individually introduced for the wall coating of the EAST vacuum vessel to suppress mainly the hydrogen and oxygen influxes from the vacuum wall, while the carbon and oxygen intrinsically exist in the plasma. The helium is frequently used as the working gas as well as the deuterium. The neon and argon are also often used for the radiation cooling of edge plasma to reduce the heat flux onto the divertor plate. The measured spectra were analyzed mainly based on the database of National Institute of Standards and Technology. As a result, spectral lines of He Ⅱ, Li Ⅱ–Ⅲ, B Ⅳ–Ⅴ, C Ⅲ–Ⅵ, O Ⅲ–Ⅷ, Ne Ⅱ–Ⅹ,Si Ⅴ–Ⅻ, and Ar Ⅹ–XVI are identified in EAST plasmas of which the central electron temperature and chord-averaged electron density range in T_(e0)=0.6–2.8 keV and n_e=(0.5–6.0)×10~(19) m~(-3), respectively. The wavelengths and transitions of EUV lines identified here are summarized and listed in a table for each impurity species as the database for EUV spectroscopy using fusion plasmas.  相似文献   

2.
The dominant wavelength range of edge impurity emissions moves from the visible range to the vacuum ultraviolet(VUV) range, as heating power increasing in the Experimental Advanced Superconducting Tokamak(EAST). The measurement provided by the existing visible spectroscopies in EAST is not sufficient for impurity transport studies for high-parameters plasmas. Therefore, in this study, a VUV spectroscopy is newly developed to measure edge impurity emissions in EAST. One Seya-Namioka VUV spectrometer(McPherson 234/302) is used in the system, equipped with a concave-corrected holographic grating with groove density of 600 grooves mm~(–1). Impurity line emissions can be observed in the wavelength range ofλ=50–700 nm, covering VUV, near ultraviolet and visible ranges. The observed vertical range is Z=-350–350 mm. The minimum sampling time can be set to 5 ms under full vertical binning(FVB) mode. VUV spectroscopy has been used to measure the edge impurity emission for the 2019 EAST experimental campaign. Impurity spectra are identified for several impurity species, i.e., lithium(Li), carbon(C), oxygen(O), and iron(Fe). Several candidates for tungsten(W) lines are also measured but their clear identification is very difficult due to a strong overlap with Fe lines. Time evolutions of impurity carbon emissions of CII at 134.5 nm and CIII at97.7 nm are analyzed to prove the system capability of time-resolved measurement. The measurements of the VUV spectroscopy are very helpful for edge impurity transport study in the high-parameters plasma in EAST.  相似文献   

3.
Spectroscopy in the soft X-ray and extreme ultraviolet(XEUV) region is very important in magnetic fusion research.Recently,two flat-field spectrometers that utilize a varied line spacing grating to image the spectra of 1-13 nm and 5-50 nm were installed on EAST for core impurity emission monitoring and impurity transport study.The instruments were proven to be capable of observing spectral lines from low-Z impurities(Li,C,O,N,Ar,etc.) and highly ionized medium- and high-Z impurities(Fe,Cr,Ni,Cu,Mo,etc.).For example,spectra in the wavelength intervals of 1-2 nm and 5-13 nm contained strong metal lines,especially molybdenum lines during H-mode phases.Argon and nitrogen lines were also observed,which were injected for diagnostic purposes.Impurity lines were identified and compared to measurements on other magnetic fusion research devices.Detailed measurements of radial emission profiles from various impurity line emissions were also presented.  相似文献   

4.
Ion populations and emitted spectrum of argon plasma have been calculated using the POPULATE and SPECTRA codes of the RATION suite at different conditions (electron temperatures, electron densities, ion densities, plasma size) for LTE and NLTE models. Expected argon plasma spectra at certain electron temperature range have been plotted. The suitable electron temperatures ranges for argon plasma soft X-ray (3–4 keV) emission and EUV (60–200 eV) emission have been investigated. POPULATE and SPECTRA codes have been presented as a good assisted tools for plasma focus diagnostics.  相似文献   

5.
Spectral measurement of tungsten (W) impurity is essential to study impurity transport. Therefore, an X-ray crystal spectrometer (XCS) on EAST was used to measure the line spectra from highly ionized W ions. On EAST, both poloidal XCS and tangential XCS have been developed to measure the plasma temperature as well as the rotation velocity. Recently, He-like and H-like argon spectra have also been obtained using a two-crystal setup. W lines are identified in this study. Through a careful analysis, the W lines of 3.9336, 3.9321, and 3.664 Å are found to be diffracted by He-like or H-like crystals. The lines are confirmed with the NIST database. We also calculated the ion temperature with Doppler broadening of these lines. The ion temperature from the W lines is entirely consistent with that from Ar line spectra. The measurement of these W line spectra could be used to study W impurity transport in future work.  相似文献   

6.
The deposition profile of the impurity pellet is measured by a two-dimensional fast- framing vacuum ultraviolet (VUV) camera system in the large helical device (LHD). The fast framing camera selectively measures the emission from the hydrogen-like ions of carbon (C VI) with a frame rate of several kHz. From the emission profile of the hydrogen-like carbon ions, which are in the process of ionization, the initial deposition profile of the carbon is estimated using a simple one-dimensional transport model.  相似文献   

7.
Lithiumization of the vacuum vessel wall of the Aditya tokamak using a lithium rod exposed to glow discharge cleaning plasma has been done to understand its effect on plasma performance. After the Li-coating, an increment of ~100 eV in plasma electron temperature has been observed in most of the discharges compared to discharges without Li coating, and the shot reproducibility is considerably improved. Detailed studies of impurity behaviour and hydrogen recycling are made in the Li coated discharges by observing spectral lines of hydrogen, carbon, and oxygen in the visible region using optical fiber, an interference filter, and PMT based systems. A large reduction in O I signal (up to ~ 40% to 50%) and a 20% to 30% decrease of H α signal indicate significant reduction of wall recycling. Furthermore, VUV emissions from O V and Fe XV monitored by a grazing incidence monochromator also show the reduction. Lower Fe XV emission indicates the declined impurity penetration to the core plasma in the Li coated discharges. Significant increase of the particle and energy confinement times and the reduction of Z eff of the plasma certainly indicate the improved plasma parameters in the Aditya tokamak after lithium wall conditioning.  相似文献   

8.
An impurity powder dropper was installed in the 21 st campaign of the Large Helical Device experiment(Oct. 2019–Feb. 2020) under a collaboration between the National Institute for Fusion Science and the Princeton Plasma Physics Laboratory for the purposes of real-time wall conditioning and edge plasma control. In order to assess the effective injection of the impurity powders,spectroscopic diagnostics were applied to observe line emission from the injected impurity. Thus,extreme-ultraviolet(EUV) and vacuum-ultraviolet(VUV) emission spectra were analyzed to summarize observable impurity lines with B and BN powder injection. Emission lines released from B and N ions were identified in the EUV wavelength range of 5–300 ? measured using two grazing incidence flat-field EUV spectrometers and in the VUV wavelength range of 300–2400 ? measured using three normal incidence 20 cm VUV spectrometers. BI–BV and NIII–NVII emission lines were identified in the discharges with the B and BN powder injection, respectively. Useful B and N emission lines which have large intensities and are isolated from other lines were successfully identified as follows: BI(1825.89, 1826.40) ?(blended), BII 1362.46 ?, BIII(677.00, 677.14,677.16) ?(blended), BIV 60.31 ?, BV 48.59 ?, NIII(989.79, 991.51, 991.58) ?(blended), NIV765.15 ?, NV(209.27, 209.31) ?(blended), NVI 1896.80 ?, and NVII 24.78 ?. Applications of the line identifications to the advanced spectroscopic diagnostics were demonstrated, such as the vertical profile measurements for the BV and NVII lines using a space-resolved EUV spectrometer and the ion temperature measurement for the BII line using a normal incidence 3 m VUV spectrometer.  相似文献   

9.
The measurement of impurity distribution in the divertor region of tokamaks is key to studying edge impurity transport. Therefore, a space-resolved vacuum-ultraviolet (VUV) spectrometer is designed to measure impurity emission in the divertor region on EAST. For good spectral resolution, an eagle-type VUV spectrometer with 1 m long focal length with spherical holograph grating is used in the system. For light collection, a collimating mirror is installed between the EAST plasma and the VUV spectrometer to extend the observing range to cover the upper divertor region. Two types of detectors, i.e. a back-illuminated charge-coupled device detector and a photomultiplier-tube detector, are adopted for the spectral measurement and high-frequency intensity measurement for feedback control, respectively. The angle between the entrance and exit optical axis is fixed at 15°. The detector can be moved along the exit axis to maintain a good focusing position when the wavelength is scanned by rotating the grating. The profile of impurity emissions is projected through the space-resolved slit, which is set horizontally. The spectrometer is equipped with two gratings with 2400 grooves/mm and 2160 grooves/mm, respectively. The overall aberration of the system is reduced by accurate detector positioning. As a result, the total spectral broadening can be reduced to about 0.013 nm. The simulated performance of the system is found to satisfy the requirement of measurement of impurity emissions from the divertor area of the EAST tokamak.  相似文献   

10.
Measurements of the enhancement of line intensities from oxygen and carbon ions during beam injection of hydrogen atoms into the DITE tokamak have been made for neutral energies of 25 keV and beam powers up to 2 MW. Observations of the spectrum from O encompass the Lyman series in the XUV region (1s?np, n < 9) and Δn = 1 transitions in the VUV and visible regions. The different selection rules for these transitions allow a differentiation between C/X and electron impact excitation of the different (n,l) states. Using theoretical cross-sections and a cascade model for C/X recombination in to hydrogenic ions, the concentrations of impurity nuclei (eg: O8+) are determined from the Δn = 1 VUV lines. This analysis is unsuitable for the Lyman series which lack the C/X signature. Their intensity is determined primarily by the ionisation balance, and the excitation from ground state hydrogenic ion. l state mixing is considered. No indication of statistical repopulation of the sublevels is observed for n < 7.  相似文献   

11.
Dy3+激活的几种硼酸盐在VUV-VIS范围的光谱性质   总被引:1,自引:0,他引:1  
赫泓  梁宏斌  王淑彬  苏锵  陶冶  巨新  侯雪颍 《核技术》2002,25(10):783-787
本文报道了SrAl2B2o7:Dy^3 、BaAl2B2O7:Dy^3 、SrAl3BO7:Dy^3 、La2CaB10O19:Dy^3 的紫外-真空紫外(UV-VUV)激发光谱和UV激发下的发射光谱。根据发射光谱讨论了Dy^3 离子在这几种基质中发光的黄蓝比(Y/B)。在VUV激发光谱中推测了Dy^3 的f-d跃迁及电荷迁移态(CTS)和基质吸收的位置。  相似文献   

12.
The Helicity Injected Torus with Steady Inductive current drive (HIT-SI) device is a spheromak which uses two inductively driven helicity injectors to provide constant helicity injection. The HIT-SI diagnostic set includes 96 3-D magnetic surface probes, 20 toroidal flux loops, an internal array of three stems of 3-D magnetic probes, a far infrared interferometer, a SPRED diagnostic, two tangentially viewing vacuum ultraviolet (VUV) spectrometers, a bolometer, a Zeff diagnostic, H-alpha detectors, a time integrated CCD camera, and Ion Doppler Spectroscopy (IDS). In addition, a multi point Thomson Scattering system, a microwave interferometer/polarimeter, injector voltage probes, an edge Langmuir probe array, and soft X-ray camera are under development.  相似文献   

13.
Impurity accumulation is studied for neutral beam-heated discharges after hydrogen multi-pellet injection in Large Helical Device (LHD). Iron density profiles are derived from radial profiles of EUV line emissions of FeXV-XXIV with the help of the collisional-radiative model. A peaked density profile of Fe23+ is simulated by using one-dimensional impurity transport code. The result indicates a large inward velocity of -6 m/s at the impurity accumulation phase. However, the discharge is not entirely affected by the impurity accumulation, since the concentration of iron impurity, estimated to be 3.3x10-5 to the electron density, is considerably small. On the other hand, a flat profile is observed for the carbon density of C6+, which is derived from the Zeff profile, indicating a small inward velocity of -1 m/s. These results suggest atomic number dependence in the impurity accumulation of LHD, which is similar to the tokamak result.  相似文献   

14.
HEXOS (high efficiency extreme ultraviolet overview spectrometer) is an optimized set of four efficient VUV/XUV spectrometers. It is suitable for a complete coverage of the wavelength range of interest with sufficient spectral resolution. The spectrometers cover the entire wavelength range of 2.5–160 nm with high performance (up to 9999 spectra at spectra rate of 1000 s?1). To operate according to the Wendelstein 7-X (W7-X) control and data acquisition guidelines all necessary concepts for safety, autonomous and subordinated operation, and segment program controlled experiment operation will be implemented at HEXOS. The design of the HEXOS control and data acquisition system and the implementation of the main W7-X control and data acquisition concepts are described. An outlook on the test phase at the TEXTOR (Tokamak Experiment for Technology Oriented Research) device and the commissioning phase at W7-X is given.  相似文献   

15.
A high-speed vacuum ultraviolet (VUV) imaging telescope system has been developed to measure the edge plasma emission (including the pedestal region) in the Experimental Advanced Superconducting Tokamak (EAST).The key optics of the high-speed VUV imaging system consists of three parts:an inverse Schwarzschild-type telescope,a micro-channel plate (MCP) and a visible imaging high-speed camera.The VUV imaging system has been operated routinely in the 2016 EAST experiment campaign.The dynamics of the two-dimensional (2D) images of magnetohydrodynamic (MHD) instabilities,such as edge localized modes (ELMs),tearing-like modes and disruptions,have been observed using this system.The related VUV images are presented in this paper,and it indicates the VUV imaging system is a potential tool which can be applied successfully in various plasma conditions.  相似文献   

16.
电荷交换复合光谱(Charge e Xchange Recombination Spectroscopy,CXRS)诊断是核聚变装置上测量等离子体离子温度和旋转速度的常规诊断之一。然而在实验中,诊断光通过光谱仪后,由于仪器函数的卷积效应,会使测量到的光谱出现明显展宽,影响数据处理的精度,所以需要对实验测量到的光谱进行反卷积处理。本文采用的反卷积方法是基于贝叶斯条件概率公式推导得出,并结合标准灯获取的仪器函数来进行反卷积,分别从仿真和实验两个方面验证了该方法的可靠性。结果表明将贝叶斯反卷积运用到先进实验超导托卡马克(Experimental Advanced Superconducting Tokamak,EAST)电荷交换复合光谱分析中,能有效提高实验测量精度。结合快速极紫外谱仪(Extreme ultraviolet,EUV),对EAST实验中经过贝叶斯反卷积后测量到的光谱进行了杂质谱线识别工作,进一步提高了精度。  相似文献   

17.
Radial profiles of impurity ions of carbon, neon and iron were measured for high-temperature plasmas in large helical device (LHD) using a space-resolved extreme ultraviolet (EUV) spectrometer in the wavelength range of 60 to 400?. The radial positions of the impurity ions obtained are compared with the local ionization energies, Ei of these impurity ions and the electron temperatures TeZ there. The impurity ions with 0.3?Ei?1.0 keV are always located in outer region of plasma, i.e., 0.7?ρ?1.0, and those with Ei?0.3keV are located in the ergodic layer, i.e., 1.0?ρ?1.1, with a sharp peak edge., where ρ is the normalized radial position. It is newly found that TeZ is approximately equal to Ei for the impurity ions with Ei?0.3keV, whereas roughly half the value of Ei for the impurity ions with 0.3?Ei?1.0keV. It is known that TeZ is considerably lower than Ei in the plasma edge and approaches to Ei in the plasma core. Therefore, this result seems to originate from the difference in the transverse transport between the plasma edge at ρ?1.0 and the ergodic layer at ρ?1.0. The transverse transport is studied with an impurity transport simulation code. The result revealed that the difference appearing in the impurity radial positions can be qualitatively explained by the different values of diffusion coefficient, e.g., D=0.2 and 1.0m2/s, which can be taken as a typical index of the transverse transport.  相似文献   

18.
The temporal evolution of extreme ultraviolet (EUV) emission spectra of laser-produced antimony (Sb) plasmas has been measured in the 7–16 nm wavelength region using spatio- temporally resolved lase-produced plasma spectroscopy technique. The spectral profiles involve an intense quasi-continuous band with superimposed intense characteristic radiation and are different with the increase of delay time. The spectral structures were also analyzed according to Hartree–Fock calculations with configuration interaction effects and contributed from 4d–4f, 4d–4p, and 4d–5f unresolved transition arrays of Sb7+ – Sb13+. A steady-state collisional- radiative model was used to estimate the electron temperature and density range of Sb plasmas. This work would enrich the spectral data of highly-charged ions and provided a possible selection for developing EUV light sources.  相似文献   

19.
为保证核级PuO2粉末的产品质量,需建立准确测定核级PuO2粉末中微量杂质元素的方法。实验采用HNO3-HF混酸溶解PuO2粉末,以6mol/L HNO3溶液为淋洗液,用强碱性阴离子树脂(256×4)分离钚和杂[JP2]质元素,通过正交试验优化仪器参数,用ICP-AES测定了PuO2粉末中微量杂质元素。对50 mg PuO2样品,大部分元素的重加回收率为80%~120%,相对标准偏差sr优于20%(n=6),元素检出限小于10μg/g(以Pu计)。  相似文献   

20.
Light emission from carbon-based materials (fine grain graphite, CFC and silicon doped CFC) was observed during ITER relevant thermal shock loads by means of in situ optical diagnostics. The light emission which corresponds to particle release clearly indicated different particle release processes in the three materials. The differences were also found in the initiation temperatures of particle release and the surface morphology of the loaded areas. These results are related to the thermal stress in bulk materials. In addition to particle release, vapor cloud formation caused by thermal shock loads were observed as CII lines and lines from the C2 Swan system. No Si lines but lines from SiC2 molecules (Merrill-Sanford bands) were observed in Si doped CFC. This indicates that atomic silicon is not released under ITER relevant thermal shock loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号