首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
Cr3C2-NiCr涂层是中高温下理想的耐磨、抗氧化、耐蚀涂层,常用于高温下的燃气冲蚀磨损、磨粒磨损、微动磨损、硬表面磨损等场合.文中采用超音速等离子喷涂的方法在CuCrZr合金表面制备Cr3C2-NiCr涂层,并采用超声冲击的方法对涂层进行后处理.结果表明,经超声冲击处理后,涂层孔隙率由2.34%降低至1.83%;涂层的平均显微硬度由8.9 GPa提高至9.6 GPa,且硬度分布更均匀;在650℃下进行热震试验,涂层的热震寿命显著提高,热震裂纹的扩展路径也发生了变化.  相似文献   

2.
HVOF喷涂Cr3C2-NiCr涂层的磨粒磨损性能   总被引:2,自引:0,他引:2       下载免费PDF全文
探讨了氧气流量、燃气流量和喷涂距离三个喷涂工艺参数对HVOF喷涂Cr3C2-NiCr涂层硬度和磨粒磨损性能的影响。结果表明,燃气流量、氧气流量和喷涂距离对涂层的显微硬度和磨粒磨损性能的规律有所不同。在较高的燃气流量、适中的氧气流量和喷涂距离条件下,涂层具有较高的显微硬度;而氧气流量和燃气流量对涂层的磨粒磨损性能影响较大,适中的燃气流量条件下,涂层的磨粒磨损失重量较低,高的氧气流量条件下,磨损失重量  相似文献   

3.
陈健  刘雪飘  梁欢  崔庭  方锴 《焊接学报》2012,33(5):13-16
在CuCrZr合金表面等离子喷涂Cr3C2-NiCr涂层、NiAl/Cr3C2-NiCr复合涂层.测试涂层与基体间的结合强度及涂层的热震性能,结合SEM,EDS和XRD等分析涂层物相变化,探讨涂层的结合机理.结果表明,涂层的结合强度均较高;Ni-Al发生放热反应,生成Al4Ni3,Al3Ni2,AlNi3,剩余的铝与铜反应生成Cu3Al2,CuAl2,CuAl,局部区域形成微冶金结合;二种涂层均以机械锚合为主,在参数适合且基体相同的情况下,涂层结合强度取决于涂层材料的力学性能;相同试验条件下,NiAl/Cr3C2-NiCr复合涂层的热震性能优于Cr3C2-NiCr涂层.  相似文献   

4.
超音速火焰喷涂Cr3C2-NiCr涂层磨粒磨损行为   总被引:4,自引:1,他引:4  
采用橡胶轮磨损实验机,对不同工艺条件下三种类型粉末制备的HOVF Cr3C2-25%NiCr涂层进行了磨粒磨损实验,发现该涂层的磨损失重量与磨程基本呈现线性关系,磨损率远低于低碳钢。氧气流量,燃气流量适中的条件下制备的涂层磨损率较低,用团聚致密化工艺制备的粉末沉积的涂层耐磨粒磨损性能较好,涂层的磨损机制主要为先期的粘结相优先切削和随后的碳化物剥落,其中碳化物的剥落对磨损过程起制约作用。  相似文献   

5.
采用超音速火焰喷涂技术喷涂不同工艺的两种粉末,得到Cr3C2-25NiCr和WC-12Co涂层;对涂层的冲蚀磨损性能进行了测试;采用扫描电镜对原始粉末以及冲蚀前后涂层的组织形貌进行了观察。结果表明,团聚烧结粉制备的涂层组织较致密。粘结相含量较多的涂层,其冲蚀磨损性能较差;致密度较高的涂层,其冲蚀磨损性能较好。  相似文献   

6.
研究分析了铸铁轧辊表面等离子喷涂Cr3C2-25NiCr复合涂层的组织结构。结果表明,Cr3C2-25NiCr涂层具有典型的层状结构;涂层质量较好,组织相对紧密,与基体结合尚可;由EDS和涂层物相分析可知,涂层与基体间没有发生元素扩散现象,涂层与基体呈机械结合。  相似文献   

7.
王井  何冰  罗京帅  员霄  蹤雪梅 《表面技术》2019,48(9):211-217
目的 分析超音速火焰喷涂制备的Cr3C2-NiCr涂层在碱性环境中的腐蚀及冲蚀腐蚀磨损性能,揭示涂层腐蚀及冲蚀腐蚀磨损失效机制。方法 利用超音速火焰喷涂技术在45#钢表面制备Cr3C2-NiCr金属陶瓷涂层,采用光学显微镜、显微硬度仪、碱性环境腐蚀性能试验台、电化学分析仪、冲蚀腐蚀磨损试验机、电子天平、扫描电子显微镜,分别对组织结构、显微硬度、碱性环境下耐蚀性能、耐冲蚀腐蚀磨损性能、冲蚀腐蚀磨损损失质量及表面形貌进行测试。结果 Cr3C2-NiCr涂层呈典型层状结构,内部随机分布着孔隙及氧化物,涂层孔隙率及显微硬度平均值分别为1.3%和817HV0.1。在pH=11的NaOH溶液中,涂层的电化学腐蚀电位为-0.38 V,腐蚀反应生成的氧化物可有效阻止腐蚀继续进行,长期浸泡过程中,腐蚀介质通过裂纹或穿透性孔隙渗入涂层内部直至基体表面,并发生腐蚀反应,形成的腐蚀产物逐渐累积并排出至涂层表面,最终形成体积较大且呈团絮状的腐蚀产物。在碱性腐蚀环境下,腐蚀介质加剧冲蚀磨损中的材料消耗。相同条件下,涂层腐蚀冲蚀磨损损失质量明显小于基体材料,涂层的冲蚀腐蚀磨损失效机制主要有腐蚀产物脱落、硬质颗粒剥落、粘结相磨耗、缺陷处因疲劳裂纹整体脱落。结论 在碱性环境中,Cr3C2-NiCr涂层具有较强的耐腐蚀性能,腐蚀介质能加快涂层冲蚀磨损进程,磨损后表面为非光滑表面,使涂层具有较优的抗冲蚀磨损性能,故Cr3C2-NiCr涂层可显著改善基体表面的综合使用性能。  相似文献   

8.
袁涛  屈轶  史萌  罗洪军  于继平 《表面技术》2013,42(6):63-65,77
目的 通过热喷涂涂层,解决 350 MW 超临界机组再热第一级静叶栅的高温冲蚀问题。 方法 采用超音速火焰喷涂制备了 NiCr-Cr3C2 涂层,测试了涂层的显微组织、孔隙率、显微硬度、结合强度及高温冲蚀性能,并对涂层在冲蚀条件下的失效机理进行分析。 结果 实验室条件下, NiCr-Cr3C2 涂层孔隙率为 0 . 98% ,显微硬度达到 1061 . 2 HV0 . 3 ,结合强度约为 80 MPa。 装机试车时,0 . 22 mm 厚的 NiCr-Cr3C2涂层可使再热第一级静叶的寿命延长 3 倍左右。 结论 采用 NiCr-Cr3C2 涂层可显著延长静叶寿命,小角度粒子犁削冲蚀是涂层加速失效的主要原因。  相似文献   

9.
在氧气流量和喷涂距离一定的条件下,揭示了燃气流量对超音速火焰喷涂Cr3C2-NiCr涂层显微结构及冲蚀性能的影响,并探讨了冲蚀角度对Cr3C2-NiCr涂层冲蚀性能的影响.结果表明: 在相同冲蚀角度下,高燃气流量制备的涂层损耗率小;随着冲蚀角度的增加,涂层的损耗率逐渐增加;在90°时,损耗率达到最大.  相似文献   

10.
通过超音速火焰(HVOF)技术,采用不同的工艺参数在低碳钢表面喷涂Cr_3C_2-NiCr涂层;对所得涂层进行磨粒磨损实验.同时考察低碳钢磨损性能,比较喷涂层之间的磨损性能及其与基体的磨损性能.采用光学金相显微镜观察涂层断面的形貌,通过显微硬度计测试涂层的显微硬度.结果表明.Cr_3C_2-NiCr涂层磨损质量损失与磨程基本呈线性关系;涂层的磨损性能高于低碳钢;不同参数制备的涂层,其磨粒磨损性能也不一样,其中燃气流量为38 L/min时的涂层磨损性能较好,该条件下涂层的断面显微组织呈现层状结构,其显微硬度也较高.  相似文献   

11.
郭稷  李改叶  吴玉萍  洪晟 《焊接学报》2015,36(2):109-112
采用超音速火焰喷涂(high velocity oxy-fuel,HVOF)技术在Q235钢基体上制备了Cr3C2-Ni Cr涂层,借助X射线衍射(XRD)和扫描电镜(SEM)等方法分析了涂层的相组成和微观组织,研究涂层与镀铬层在质量分数为3.5%Na Cl溶液中的腐蚀性能.结果表明,涂层主要由Cr3C2,Cr7C3和Ni Cr等相组成,涂层的致密度高,层状结构明显,含少量孔隙.阻抗谱曲线表明,Cr3C2-Ni Cr涂层对基体的保护作用良好,在Na Cl溶液中浸泡时间40 d后,极化电阻为2.8 kΩ,而镀铬层失效严重,极化电阻为300Ω.极化曲线表明,Cr3C2-Ni Cr涂层在浸泡周期内腐蚀电位平稳,腐蚀电流缓慢增加.镀铬层的腐蚀电位下降较快,腐蚀速率成倍增加.孔洞是影响Cr3C2-Ni Cr涂层耐蚀性的重要原因,影响镀铬层耐蚀性的主要原因是裂纹.  相似文献   

12.
在两种喷涂参数下,采用超音速火焰喷涂(HVOF)制备了两种Cr3C2-25%NiCr涂层,用金相显微镜和扫描电子显微镜(SEM)表征粉末和涂层的显微组织,用图像处理软件分析涂层孔隙率,并进行涂层维氏显微硬度测试,对涂层进行高温摩擦磨损试验,分析对比了两种涂层的耐磨性,并探讨了磨损机理.结果表明:两种Cr3C2-25% NiCr涂层的孔隙率和硬度,CrC-1为0.90%和848.1 HV1,CrC-2为0.42%和884.6 HV1,涂层的高温磨损主要为粘着磨损伴有颗粒切削和剥落带来的磨粒磨损,其中CrC-2具有较好的耐磨性.  相似文献   

13.
陈健  崔庭 《焊接技术》2012,41(5):17-20,1
利用等离子弧喷涂技术在结晶器CuNiCoBe基体上制备了Cr3C2-NiCr涂层,采用正交试验法研究了喷涂工艺参数对涂层与基体结合强度的影响,对拉伸断面的形貌和涂层的显微结构进行了观察和分析.结果表明,影响Cr3C2-NiCr涂层与CuNiCoBe基体结合强度的主次因素依次为:送粉速率>主气流量>喷涂距离>喷涂功率;经正交试验优化后的喷涂工艺参数为:喷涂距离90mm,主气流量56.6L/min,送粉速率20 g/min,喷涂功率25 kW;优化后,涂层与基体的结合强度可达18.5 MPa;涂层截面的显微硬度分布符合正态分布.  相似文献   

14.
NiCr clad hexagonal BN powder (NiCr/hBN) was added to NiCr/Cr3C2 feedstock to improve the tribological properties of chromium carbide nichrome coating. The microstructure, flowability and apparent density of the composite powder, as well as the structure and mechanical properties of the plasma sprayed coating were characterized. The friction and wear behavior of the NiCr/Cr3C2-NiCr/hBN coating from ambient temperature up to 800 °C was evaluated on a ball-on-disk wear tester and compared with that of NiCr/Cr3C2 coating and NiCr/Cr3C2-NiCr/BaF2·CaF2 coating. The results show that NiCr cladding can reduce the decarburization of Cr3C2 and oxidation of hBN during the thermal spray. The main wear mechanisms of the NiCr/Cr3C2-NiCr/hBN composite coating are ploughing and adhesive wear. Layered hexagonal BN particle reduce the direct contact and severe adhesion between friction pairs, thus decreasing the friction coefficient. The NiCr/Cr3C2-NiCr/hBN composite coating shows a promising application in the high temperature environment with the request of both wear resistance and friction reduction.  相似文献   

15.
The objective of the present work is to determine the influence of the heat treatment on the corrosion resistance of a Cr3C2-NiCr coating of 450 μm thickness, deposited by a vacuum plasma spray process (VPS) on a steel substrate. The post-heat treatment of the as-deposited coating was carried out in Ar at 400 °C and 800 °C, respectively. The coatings were characterized by means of an electron probe micro analyzer (EPMA) with wavelength dispersive X-ray spectrometers (WDS). It was found that no significant changes were produced as a consequence of the heat treatment carried out at 400 °C. Therefore, the corrosion experiments were conducted for the substrate, the as-deposited coating and the post-heat treated coating at 800 °C. Potentiodynamic polarization showed that the annealed coating at 800 °C has a better corrosion resistance than the as-deposited coating. The corrosion current density (Icorr) of this coating was approximately 3 and 4 times smaller than that corresponding to the as-deposited coating and steel substrate, respectively. This significant improvement of the corrosion behavior of the post-heat treated coating is mainly due to both the microstructural changes that take place in the coating and the diffusion of Ni into Fe at the coating-substrate interface, which ensures the presence of a metallurgical bond.  相似文献   

16.
In the present work the corrosion resistance of micro-cracked hard chromium and Cr3C2-NiCr (HVOF) coatings applied on a steel substrate have been compared using open-circuit potential (EOC) measurements, electrochemical impedance spectroscopy (EIS) and polarization curves. The coatings surfaces and cross-section were characterized before and after corrosion tests using optical microscopy (OM) and scanning electron microscopy (SEM). After 18 h of immersion, the open-circuit potential values were around −0.50 and −0.25 V/(Ag∣AgCl∣KClsat) for hard chromium and Cr3C2-NiCr, respectively. The surface analysis done after 12 h of immersion showed iron on the hard chromium surface inside/near surface cracks, while iron was not detected on the Cr3C2-NiCr surface even after 18 h. For longer immersion time hard chromium was more degraded than thermal sprayed coating. For hard chromium coating a total resistance values between 50 and 80 kΩ cm2 were measured and two well-defined time constants were observed, without significant change with the immersion time. For Cr3C2-NiCr coating the total impedance diminished from around 750 to 25 kΩ cm2 as the immersion time increased from 17 up to 132 h and two overlapped time constants were also observed. Polarization curves recorded after 18 h of immersion showed a lower current and higher corrosion potential for Cr3C2-NiCr coating than other samples studied.  相似文献   

17.
Cr3C2–NiCr coatings were deposited by high velocity oxy-fuel (HVOF) process with different spray parameters to examine dominant microstructural factors in abrasive wear of the coatings. The microstructure of the HVOF sprayed Cr3C2–NiCr coatings was characterized by scanning electron microscopy and transmission electron microscopy (TEM). The apparent average size and volume fraction of carbide particles in the coatings were estimated through a quantitative imaging analysis. The formation of carbide phases in the coating was discussed based on the TEM observation results. The abrasive wear behavior of the coating was evaluated by the dry rubber wheel abrasive wear test and the wear mechanisms were elucidated. Influences of apparent size and volume fraction of carbide particles on the abrasive wear weight loss were examined through correlating the proposed relation with the experimental results. Results showed that Cr3C2 particle size was significantly reduced after the spraying and Cr7C3 carbide was present around Cr3C2 particles, and Cr23C6 carbide was dispersed in NiCr alloy matrix with a nano-crystalline structure. The three carbides were formed in the coating through different mechanisms. The removal of carbide particles in the coating was mainly responsible for the abrasive wear of the coating. The content and particle size of the Cr3C2 carbides were the two key factors controlling the abrasive wear of the HVOF sprayed Cr3C2–NiCr coatings.  相似文献   

18.
Vacuum plasma spraying (VPS) was used to spray a Cr3C2-NiCr coating of ∼ 150, 300 and 450 μm in thickness onto a plain carbon steel substrate, employing a commercially available Cr20Ni9.5C powder. The splat microstructures observed in the coating were found to consist of a NiCr matrix with a predominant Cr3C2 phase, besides Cr7C3 and Cr2O3. The adhesion of the coating to the substrate was evaluated by means of interfacial indentation techniques. It has been found that the interfacial toughness value changes from 7.6 to 10.1 MPa m1/2 when the thickness increases from 150 to 450 μm. Also, it has been found that the parameter Kcao, determined by linear regression from the Kca versus 1 / e2 curve by means of the interfacial indentation model advanced by Chicot et al., has a value of ∼ 9.8 MPa m1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号