共查询到20条相似文献,搜索用时 78 毫秒
1.
针对传统的语义分割技术对于沥青道路裂缝的检测存在检测精度低、误差大的问题,提出了一个基于改进DeepLabv3+网络的语义分割方法。该方法在编码器阶段,采用轻量级MobileNetv2取代DeepLabv3+的主干网络Xception,从而减少参数量;在解码器阶段,引入双注意力机制以进一步提高网络的分割精度;使用Dice Loss函数与原始交叉熵损失函数混合,以缓解样本中前景和背景不平衡问题。最后以道路实时检测的数据为对象进行了大量的实验,结果表明,该方法与原始DeepLabv3+相比,平均交并比(mIoU)、平均像素精度(mPA)分别提升了8.98%和17.39%。与其他主流语义分割模型相比,改进后的DeepLabv3+在沥青道路裂缝的检测上也取得了较好的效果。 相似文献
2.
在进行口罩遮挡人脸图像修复时,往往需要进行人脸口罩的分割,分割的结果将会对后续的修复工作产生较大的影响。因此,为了更好地实现分割,通过改进图像分割网络DeepLabv3+,提出了一种针对人脸口罩分割的网络模型。将原始DeepLabv3+网络中的主干特征提取网络替换为轻量级网络MobileNetV2,减少模型的参数量,提升模型分割速度;采用密集连接方式将原始空洞空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)模块中的不同特征层进行特征融合,并引入CBAM注意力机制,增强模型特征表达能力。为了使模型能够准确分割出不同形状、大小和颜色的口罩,在损失函数中引入焦点损失(Focal Loss)进行模型训练,以缓解不同类别口罩在训练样本上的不均衡问题。通过在PASCLA VOC公共数据集和自建口罩数据集上进行实验。结果表明,改进后的模型相比基准模型在模型参数、分割时间以及分割精度上取得较好的平衡。 相似文献
3.
针对现有图像语义分割算法在对低分辨率红外图像进行分割时存在准确率不高的问题,提出了一种多分辨率特征提取算法。该算法以DeepLabv3+为基准网络,添加了一组对偶分辨率模块,该模块包含低分辨率分支和高分辨率分支,以进一步聚合红外图像特征。低分辨率分支采用GPU友好的注意力模块捕获高层全局上下文信息,同时引入一个多轴门控感知机模块并行提取红外图像局部信息和全局信息;高分辨率分支采用跨分辨率注意力模块将低分辨率分支上学习到的全局特征传播扩散到高分辨率分支上以获取更强的语义信息。实验结果表明,该算法在数据集DNDS和MSRS上的分割精度优于现有语义分割算法,证明了提出算法的有效性。 相似文献
4.
在无人机智能电力巡检中,电力线分割是实现无人机自动避障、保障低空飞行安全的关键技术。针对现有基于深度学习的电力线分割算法存在的预测速度慢、分割精度低的问题,提出了一种改进DeepLabv3+算法的电力线分割模型——PBB-DeepLabv3+。用轻量级PP-LCNet替换原始DeepLabv3+主干网络Xception,有效减少参数量并提升预测速度。在空洞空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)模块中增加空洞卷积分支和级联卷积,获取具有更大感受野的多尺度特征从而减少漏分割现象,进一步将空洞卷积分支改为瓶颈结构以减少参数量。在解码器融合3层浅层特征以恢复降采样过程中丢失的细节特征。引入瓶颈注意力模块(Bottleneck Attention Module, BAM)减少对电力线误分割现象。实验结果表明,改进算法预测速度相对于原DeepLabv3+模型提升54.39%,平均像素精度(Mean Pixel Accuracy, MPA)和平均交并比(Mean Intersection over Union, MIoU)分别提升1.18%和3.5... 相似文献
5.
基于深度学习的遥感影像图像分割技术使用越来越广泛,针对现有算法存在参数量较大、细节部分提取结果差等问题,提出一种基于改进DeepLabv3+的道路图像分割方法。将轻量型网络MobileNetV2引入改进后的池化金字塔模型用以提取中阶特征图,增强了不同感受野之间的相关性;并采用多尺度拼接融合方法生成高阶特征图,同时引入注意力机制来进一步加强对图像特征的提取效果。实验结果表明,所提方法相比于DeepLabv3+模型mIoU提高了5%,有效提升了遥感图像的分割精度。 相似文献
6.
7.
由于非结构化道路特征众多、结构复杂的特点,图像分割以及道路模型等经典算法无法满足非结构化道路识别在实际应用中的准确性和实时性要求.上述难点可通过基于深度学习的语义分割算法有效解决,采用轻量化的特征提取网络,改善特征提取网络中离散计算过多问题,优化对参数量和速度的控制,减少DeepLabv3+网络的冗余;针对非结构化道路... 相似文献
8.
在图像的语义分割任务中,不同对象之间像素值存在差异,导致现有的网络模型在图像语义分割过程中丢失图像局部细节信息。针对上述问题,提出一种图像语义分割方法(DECANet)。首先,引入通道注意力网络模块,通过对所有通道的依赖关系进行建模提高网络的表达能力,选择性地学习并强化通道特征,提取有用信息,抑制无用信息。其次,利用改进的空洞空间金字塔池化(ASPP)结构,对提取到的图像卷积特征进行多尺度融合,减少图像细节信息丢失,且在权重参数不改变的情况下提取语义像素位置信息,加快模型的收敛速度。最后,DECANet在PASCAL VOC2012和Cityscapes数据集上的平均交并比分别达81.08%和76%,与现有的先进网络模型相比,检测性能更优,可以有效地捕获局部细节信息,减少图像语义像素分类错误。 相似文献
9.
针对传统雾气图像分割算法耗时长、分割结果存在凹陷等问题,提出一种基于DeepLabv3+的雾气图像分割算法.改进算法将DeepLabv3+原结构编码器的Backbone替换为更轻量的Mobilenetv2网络;将解码器的特征融合结构进行重新设计,同时加入注意力通道模块、边缘细化模块,通过消融实验得到分割效果最佳的雾气图... 相似文献
10.
针对无人机获取的露天矿影像道路提取过程中道路边界信息丢失和路网提取不准确问题,提出一种基于改进DeepLabv3+网络的露天矿路网提取方法.利用Retinex算法对原始图像进行降噪预处理,得到色彩和光照均衡的数据集;并针对道路区域与背景所占像素比例相差较大的特点,使用占比加权的方法解决了网络训练中正负样本严重不平衡的问... 相似文献
11.
红外图像处理是实现电气故障诊断的有效手段,而电气设备分割是故障检测的关键环节。针对复杂背景下红外图像电气设备分割难问题,本文采用深度残差网络与UNet网络相结合,深度残差网络替代VGG16对UNet网络进行特征提取和编码,构建深度残差系列Res-Unet网络实现对电气设备的分割。以电流互感器和断路器两种电气设备红外图像分割为例测试Res-Unet网络分割效果,并与传统的UNet网络和Deeplabv3+网络进行对比。通过对数量为876的样本进行测试,实验结果表明,Res18-UNet能够准确地分割电气设备,对电流互感器和断路器的分割准确率超93%,平均交并比大于89%,且分割准确性优于UNet及Deeplabv3+网络模型,为实现电气故障智能诊断奠定基础。 相似文献
12.
由于深度学习中语义分割模型参数量较大且算法耗时较长,不适合部署到移动端,针对此问题,提出了一种基于改进DeepLabv3+网络的轻量级语义分割算法.首先,采用MobileNetv3代替原DeepLabv3+语义分割模型特征提取骨干网络以降低模型复杂度,加快模型运行速度;其次,将空洞空间金字塔池化模块中的标准卷积替换为深... 相似文献
13.
14.
15.
针对背景复杂的电力设备红外图像分割问题,提出一种新的分割方法.该方法运用线性谱聚类算法(LSC)对图像做超像素分割,将颜色、距离相似的像素聚类至同一个中心;利用在全局图像基础上计算所得的Otsu阈值对各超像素块做背景预标记,并利用最大相似度区域合并算法(MSRM)对超像素块进行合并,在得到目标设备的同时,有效降低了过分割和欠分割率;最后运用数学形态学算法对图像做后处理,在保证设备特征的前提下提高目标设备分割精度.实验表明,在复杂背景下与其他算法相比,该方法可得到更为准确、完整的目标设备. 相似文献
16.
17.
边界模糊图像不同区域之间没有明确的分界,用传统的图像分割方法难以得到很好的分割结果。本文研究了径向基函数网络的工作实质及其用于图像分割的机理,分析了径向基函数神经网络的特点,针对边界模糊图像,应用不同结构的径向基函数神经网络对其进行图像分割,验证了径向基函数网络用于图像分割的有效性以及算法速度上的优越性。 相似文献
18.
19.
针对对比度受限的自适应直方图均衡化(contrast limited adaptive histogram equalization, CLAHE)强行分块造成的视觉不自然现象,本文提出了一种基于语义分割的红外图像增强方法。语义分割网络将整个红外图像分割成种类块而不是传统的矩形图像块。然后,每个种类块各自进行对比度受限的直方图均衡化,以减少过度增强。最后,采用了一种新的边缘过渡方法来避免种类块之间的突变。实验结果表明,本文所提出的红外图像增强方法在对比度和熵上优于其他对比算法,而且避免了传统CLAHE的视觉不自然现象,具有更好的视觉效果。 相似文献
20.
红外图像二值化分割是对红外图像进行分析和理解的关键,图像二值化分割的质量,直接关系到图像的后期处理,结合红外图像对比度低、分辨潜力差、分辨率低等自身特点,提出一种基于局部灰度梯度值和全局化阈值面相结合的二值化分割算法。 相似文献