首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
现阶段点云分类研究已被广泛应用于机器人操作、自主驾驶和虚拟现实等多个领域,提取既丰富又具有高判别能力的特征是3D点云分类的关键.为此,文中设计基于局部-非局部交互卷积的3D点云分类算法,改善点云的特征提取.首先,构造局部-非局部交互卷积模块,在获取局部相似特征和非局部相似特征的基础上,采用交互增强,缓解单个邻域在表示封闭区域时存在的冗余问题,增强网络的层次性和稳定性,同时也缓解网络的退化问题.然后,以该模块为基本单元构建卷积神经网络.最后,采用自适应特征融合,充分利用不同层次的特征,实现3D点云的分类.在ModelNet40、ScanObjectNN基准数据集上的实验表明,文中算法性能较优.  相似文献   

2.
3D点云由于其无序性以及缺少拓扑信息使得点云的分类与分割仍具有挑战性.针对上述问题,我们设计了一种基于自注意力机制的3D点云分类算法,可学习点云的特征信息,用于目标分类与分割.首先,设计适用于点云的自注意力模块,用于点云的特征提取.通过构建领域图来加强输入嵌入,使用自注意力机制进行局部特征的提取与聚合.最后,通过多层感知机以及解码器-编码器的方式将局部特征进行结合,实现3D点云的分类与分割.该方法考虑了输入嵌入时单个点在点云中的局部语境信息,构建局部长距离下的网络结构,最终得到的结果更具区分度.在ShapeNetPart、RoofN3D等数据集上的实验证实所提方法的分类与分割性能较优.  相似文献   

3.
目的 点态卷积网络用于点云分类分割任务时,由于点态卷积算子可直接处理点云数据,逐点提取局部特征向量,解决了结构化点云带来的维度剧增和信息丢失等问题。但是为了保持点云数据结构的一致性,点态卷积算子及卷积网络模型本身并不具有描述点云全局特征的结构,因此,对点态卷积网络模型进行扩展,扩展后的模型具有的全局特征是保证分类分割准确性的重要依据。方法 构造中心点放射模型来描述点云逐点相对于全局的几何约束关系,将其引入到点态卷积网络的特征拼接环节扩展特征向量,从而为点态卷积网络构建完善的局部—全局特征描述,用于点云数据的分类分割任务。首先,将点云视为由中心点以一定方向和距离放射到物体表面的点的集合,由中心点指向点云各点的放射矢量,其矢量大小确定了各点所存在的曲面和对于中心点的紧密程度,矢量方向描述了各点对于中心点的包围方向及存在的射线。进而由点云中的坐标信息得到点云的中心点,逐点计算放射矢量构造中心点放射模型,用以描述点云的全局特征。然后,利用点云数据的坐标信息来检索点的属性,确定卷积中参与特定点卷积运算的邻域,点态卷积算子遍历点云各点,输出逐点局部特征,进一步经多层点态卷积操作得到不同深度上的局部特征描述。最后,将中心点放射模型的全局特征和点态卷积的局部特征拼接,完成特征扩展,得到点态卷积网络的扩展模型。拼接后的局部—全局特征输入全连接层用于类标签预测,输入点态卷积层用于逐点标签预测。结果 在ModelNet40和S3DIS(Stanford large-scale 3D indoor spaces dataset)数据集上分别进行实验,验证模型的分类分割性能。在ModelNet40的分类实验中,与点态卷积网络相比,扩展后的网络模型在整体分类精度和类属分类精度上分别提高1.8%和3.5%,在S3DIS数据集的分割实验中,扩展后的点态卷积网络模型整体分割精度和,类属分割精度分别提高0.7%和2.2%。结论 引入的中心点放射模型可以有效获取点云数据的全局特征,扩展后的点态卷积网络模型实现了更优的分类和分割效果。  相似文献   

4.
针对现有的人体行为识别算法不能充分利用网络多层次时空信息的问题,提出了一种基于三维残差稠密网络的人体行为识别算法。首先,所提算法使用三维残差稠密块作为网络的基础模块,模块通过稠密连接的卷积层提取人体行为的层级特征;其次,经过局部特征聚合自适应方法来学习人体行为的局部稠密特征;然后,应用残差连接模块来促进特征信息流动以及减轻训练的难度;最后,通过级联多个三维残差稠密块实现网络多层局部特征提取,并使用全局特征聚合自适应方法学习所有网络层的特征用以实现人体行为识别。设计的网络算法在结构上增强了对网络多层次时空特征的提取,充分利用局部和全局特征聚合学习到更具辨识力的特征,增强了模型的表达能力。在基准数据集KTH和UCF-101上的大量实验结果表明,所提算法的识别率(top-1精度)分别达到了93.52%和57.35%,与三维卷积神经网络(C3D)算法相比分别提升了3.93和13.91个百分点。所提算法框架有较好的鲁棒性和迁移学习能力,能够有效地处理多种视频行为识别任务。  相似文献   

5.
现有的深度学习方法在提取点云的局部特征时往往忽略了节点间的位置关系和方向信息,导致不能有效地学习点云的局部特征。为解决这一问题,提出一种集图卷积和三维方向卷积的点云分类分割模型GCN3D。GCN3D模型将图卷积神经网络应用在点云分类分割领域。将点云视作图上的节点,对每个节点求其K近邻,建立局部K近邻邻域内两两节点之间的边,并通过图卷积神经网络参数化边特征以捕捉节点间局部位置关系并更新中心节点特征;使用方向编码模块将节点的邻域划分为八个方位的细粒度的邻域小块,并按照三维空间坐标轴的方向依次将局部邻域结构内的节点特征映射到不同细粒度邻域空间内以提取节点间的方向信息,并且叠加两个方向编码模块增大网络的感受野,提高模型对于稀疏点云数据的鲁棒性并获取局部邻域多尺度特征。在ModelNet40数据集和ShapeNet数据集上分别进行点云分类和点云部分分割的实验。结果表明,相比没有考虑局部特征信息的PointNet,GCN3D模型在ModelNet40数据集上的总体分类精度提高了3.8个百分点,平均分类精度提高了4.3个百分点;在ShapeNet数据集上的平均交并比提高了1.5个百分点。相比其他深度...  相似文献   

6.
3D点云数据是一种不规则性数据,传统卷积神经网络无法直接对3D点云数据进行处理.对此,提出一种基于多尺度动态图卷积网络的3D点云分类模型.利用最远点采样方法采样3D点云数据集的代表点,降低模型计算复杂度;利用不同尺度的k最邻近节点聚合方式,对图中每一个中心节点的k最邻近节点进行定位;利用边卷积操作对中心节点及其邻接节点的局部属性特征进行提取与聚合用于分类.实验表明,该模型在3D点云分类准确度上,达到了比当前主流模型更高的水平,并且大幅降低了模型生成参数的数量.  相似文献   

7.
目的 随着3维采集技术的飞速发展,点云在计算机视觉、自动驾驶和机器人等领域有着广泛的应用前景。深度学习作为人工智能领域的主流技术,在解决各种3维视觉问题上已表现出巨大潜力。现有基于深度学习的3维点云分类分割方法通常在聚合局部邻域特征的过程中选择邻域特征中的最大值特征,忽略了其他邻域特征中的有用信息。方法 本文提出一种结合动态图卷积和空间注意力的点云分类分割方法(dynamic graph convolution spatial attention neural networks,DGCSA)。通过将动态图卷积模块与空间注意力模块相结合,实现更精确的点云分类分割效果。使用动态图卷积对点云数据进行K近邻构图并提取其边特征。在此基础上,针对局部邻域聚合过程中容易产生信息丢失的问题,设计了一种基于点的空间注意力(spatial attention,SA)模块,通过使用注意力机制自动学习出比最大值特征更具有代表性的局部特征,从而提高模型的分类分割精度。结果 本文分别在ModelNet40、ShapeNetPart和S3DIS(Stanford Large-scale 3D Indoor Spaces Dataset)数据集上进行分类、实例分割和语义场景分割实验,验证模型的分类分割性能。实验结果表明,该方法在分类任务上整体分类精度达到93.4%;实例分割的平均交并比达到85.3%;在室内场景分割的6折交叉检验平均交并比达到59.1%,相比基准网络动态图卷积网络分别提高0.8%、0.2%和3.0%,有效改善了模型性能。结论 使用动态图卷积模块提取点云特征,在聚合局部邻域特征中引入空间注意力机制,相较于使用最大值特征池化,可以更好地聚合邻域特征,有效提高了模型在点云上的分类、实例分割与室内场景语义分割的精度。  相似文献   

8.
许翔  帅惠  刘青山 《自动化学报》2021,47(12):2791-2800
基于深度学习的三维点云数据分析技术得到了越来越广泛的关注, 然而点云数据的不规则性使得高效提取点云中的局部结构信息仍然是一大研究难点. 本文提出了一种能够作用于局部空间邻域的卦限卷积神经网络(Octant convolutional neural network, Octant-CNN), 它由卦限卷积模块和下采样模块组成. 针对输入点云, 卦限卷积模块在每个点的近邻空间中定位8个卦限内的最近邻点, 接着通过多层卷积操作将8卦限中的几何特征抽象成语义特征, 并将低层几何特征与高层语义特征进行有效融合, 从而实现了利用卷积操作高效提取三维邻域内的局部结构信息; 下采样模块对原始点集进行分组及特征聚合, 从而提高特征的感受野范围, 并且降低网络的计算复杂度. Octant-CNN通过对卦限卷积模块和下采样模块的分层组合, 实现了对三维点云进行由底层到抽象、从局部到全局的特征表示. 实验结果表明, Octant-CNN在对象分类、部件分割、语义分割和目标检测四个场景中均取得了较好的性能.  相似文献   

9.
深度学习作为点云分类的重要方法之一,通常会因为点云的稀疏性、无序性、有限性等特点,导致卷积算子不能充分提取局部空间相关性,直接使用卷积提取点的相关特征将导致特征信息的丢失。为此提出一种经过X变换后的点云分类卷积神经网络:XTNet(convolutional neural network based on X-transform)。XTNet对输入的原始点云数据进行X变换,将它们置换成潜在的规范顺序,抑制点云无序性、稀疏性对卷积操作的影响,避免卷积操作过程中的信息丢失;使用K近邻算法构建局部区域后,使用卷积层提取局部信息;在提取局部特征的同时通过通道扩充增加信息传递、丰富特征;在各局部特征提取模块间设置跳跃连接,进一步减少局部信息的丢失。在标准公开数据集ModelNet40和真实数据集ScanObjectNN中进行了实验。实验结果表明,与目前主流的多个高性能网络相比,XTNet分类准确率提高了0.3~4个百分点,并且拥有良好的鲁棒性和普适性。  相似文献   

10.
基于卷积神经网络的图像分类方法的关键是提取有区分性的重点特征.为了提高重点特征的关注度,增强网络泛化能力,文中提出双分支多注意力机制的锐度感知分类网络(Double-Branch Multi-attention Mechanism Based Sharpness-Aware Classification Network, DAMSNet).该网络以ResNet-34残差网络为基础,首先,修改ResNet-34残差网络输入层卷积核尺寸,删除最大池化层,减小原始图像特征的损失.再者,提出双分支多注意力机制模块,嵌入残差分支中,从全局特征和局部特征上提取图像在通道域和空间域的上下文信息.然后,引入锐度感知最小化算法,结合随机梯度下降优化器,同时最小化损失值和损失锐度,寻找具有一致低损失的邻域参数,提高网络泛化能力.在CIFAR-10、CIFAR-100、SVHN数据集上的实验表明,文中网络不仅具有较高的分类精度,而且有效提升泛化能力.  相似文献   

11.
针对复杂结构的三维形状分析与识别问题,提出了新颖的图卷积分类方法,建立了局部几何与全局结构联合图卷积学习机制,有效提高了三维形状数据学习的鲁棒性与稳定性。首先,通过最远点采样与最近邻方法构造局部图,并建立动态卷积算子,有效提取局部几何特征;同时,基于特征域采样构造全局的特征谱图,通过卷积算子获得全局结构信息。进而,构建加权的联合图卷积学习网络模型,引入注意力机制,实现自适应的特征融合。最终,在联合优化目标函数约束下,有效提高特征学习的性能。实验结果表明,融合局部几何与全局结构的联合图卷积网络学习机制,有效提高了深度特征的表示能力及区分性,具有更为优秀的识别力和分类性能。提出的研究方法可应用于大规模三维场景识别、三维重建以及数据压缩,在机器人、产品数字化分析、智能导航、虚拟现实等领域具有着重要的工程意义与广泛的应用前景。  相似文献   

12.
传统的直接处理点云的PointNet类深度学习网络大多只考虑了点云的全局特征而忽视了点云局部特征,动态图卷积网络DGCNN通过构建[k]近邻图完成了对局部特征的弥补。然而现有的DGCNN使用简单的边缘特征作为局部特征的输入,没有对局部特征进行更深入的研究,且仅使用最大池化处理点云无序性问题,这造成了一定的信息损失。提出加权点云分类网络WDGCNN,使用特征拼接思想优化网络结构以实现多层次特征的融合、通过对[k]近邻图构成的边缘特征设计恰当的加权函数以弱化远点的干扰,相对加强近点的特征、采用最大池化和平均池化相结合的对称函数弥补单独使用最大池化造成的全局信息损失的新方法,实现了模型优化。实验结果表明,在通用点云分类数据集ModelNet40上,WDGCNN相比于DGCNN分类准确率由91.61%达到了93.22%,验证了新方法的有效性。  相似文献   

13.
针对海量、异构三维形状匹配与智能检索技术的需求,提出了一种基于级联卷积神经网络(F-PointCNN)深度特征融合的三维形状局部匹配方法.首先,采用特征袋模型,提出几何图像表示方法,该几何图像不仅能够有效区分同类异构的非刚性三维模型,而且能够揭示大尺度不完整三维模型的结构相似性.其次,构建级联卷积神经网络学习框架F-P...  相似文献   

14.
目的 三维点云分类作为一项关键任务,在计算机视觉、机器人和自动驾驶等领域有着广泛的应用场景。现有的三维点云分类网络在使用边卷积进行局部特征提取时通常存在输入特征差异性小,空间结构信息提取、融合不充分等问题。针对上述问题,设计了一种结合空间结构卷积和注意力机制的点云分类网络。方法 首先,提出一种空间结构卷积,在边卷积的基础上引入邻接点之间的相对位置信息来降低输入特征相似性,而后从结构和位置两个角度分别进行特征编码,实现更具多样性的局部几何结构捕获。其次,设计了全局特征编码模块,从坐标信息中提炼全局特征信息,同时在网络中融合了注意力机制,用于关联局部和全局特征表示,有效保留了全局特征信息,实现全局特征的适应性调整。最后,将局部几何结构信息和全局位置信息进行有效的融合,获得更具代表性和差异性的特征表征。结果 设计实验在公开数据集ModelNet40上对提出的网络模型的性能进行评估,点云分类总体准确率和平均准确率分别达到93.0%和89.7%,具备良好的分类性能和预测效率。实验结果表明,空间结构卷积的使用有效增加了输入特征的多样性,位置和结构的单独编码有效提高了局部特征的表达能力。同时,提出的注意力加权方式在保留全局特征前提下实现了局部特征和全局特征的关联。结论 提出的网络有较强的细粒度特征提取能力,具有良好的分类性能。  相似文献   

15.
目的点云分类传统方法中大量依赖人工设计特征,缺乏深层次特征,难以进一步提高精度,基于深度学习的方法大部分利用结构化网络,转化为其他表征造成了3维空间结构信息的丢失,部分利用局部结构学习多层次特征的方法也因为忽略了机载数据的几何信息,难以实现精细分类。针对上述问题,本文提出了一种基于多特征融合几何卷积神经网络(multi-feature fusion and geometric convolutional neural network,MFFGCNN)的机载Li DAR(light detection and ranging)点云地物分类方法。方法提取并融合有效的浅层传统特征,并结合坐标尺度等预处理方法,称为APD模块(airporne laser scanning point cloud design module),在输入特征层面对典型地物有针对性地进行信息补充,来提高网络对大区域、低密度的机载Li DAR点云原始数据的适应能力和基础分类精度,基于多特征融合的几何卷积模块,称为FGC(multi-feature fusion and geometric convolution)算子,...  相似文献   

16.
随着点云采集技术的发展和三维应用需求的增加, 实际场景要求针对流动数据持续动态地更新点云分析网络. 对此, 提出了双重特征增强的三维点云类增量学习方法, 通过增量学习使点云目标分类技术能够适应新数据中不断出现新类别目标的场景. 该方法通过对点云数据特性和旧类信息的研究分别提出了差异性局部增强模块和知识注入网络, 以缓解类增量学习中的新类偏好问题. 具体而言, 差异性局部增强模块通过感知丰富的局部语义, 表征出三维点云物体中不同的局部结构特性. 随后, 根据目标中每个局部结构的全局信息获得各个局部的重要性权重, 强化对差异性局部特征的感知, 从而提高新旧类特征差异性. 另外, 知识注入网络将旧模型中的旧知识注入新模型的特征学习过程中, 增强后的混合特征能够更有效缓解旧类信息不足导致的新类偏好加剧现象. 在三维点云数据集ModelNet40, ScanObjectNN, ScanNet, ShapeNet上的实验表明, 该方法与现有最优方法相比, 在4个数据集上的平均增量准确率有2.03%、2.18%、1.65%、1.28% 提升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号