共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
研究了一种新型快凝快硬高贝利特硫铝酸盐水泥的水化性能,并利用微量热仪、XRD、TGA、SEM等方法进行了水泥水化过程,水化产物和微观形貌结构的表征.实验结果表明:新型高贝利特硫铝酸盐水泥熟料的早期水化放热迅速并集中,早期强度发展迅速;该水泥的早期水化产物主要为AFt和铝胶相,未发现CH相;在水化后期,生成的AFt会发生转化生成AFm相,同样没有发现CH相.随着水化的进行,水化产物不断增多,针棒状的AFt穿插,交错在凝胶之间,形成了较为致密的结构,从而提高了水泥的强度. 相似文献
3.
4.
5.
基于我国提出的“双碳”战略目标,水泥行业应针对其高碳排放问题制定脱碳计划,因此,低碳水泥的研发和应用迫在眉睫。高贝利特硫铝酸盐水泥是一种在节能减排的同时能够资源化利用含铝工业废弃物的新型低碳水泥,未来也将会是一种具有高强度的低成本水泥。因此,高贝利特硫铝酸盐水泥的研发促进了水泥行业的绿色化发展。然而,水泥矿物组成中高活性无水硫铝酸钙含量较低,导致水泥石早期强度较低。对水泥早期活性进行研究可提升水泥强度,进而扩大其应用范围。本文通过简述高贝利特硫铝酸盐水泥的组成、特点和研究现状,从水泥主要矿物硅酸二钙、无水硫铝酸钙的活化和水泥矿物组成设计优化三个方面总结了影响高贝利特硫铝酸盐水泥活性的因素,旨在为高性能水泥的研制提供理论指导。 相似文献
6.
研究了海水拌和与海水养护条件下高贝利特硫铝酸盐水泥(HB-CSA)和普通硅酸盐水泥(OPC)胶砂的抗压强度和抗折强度,采用等温量热法、X射线衍射分析法和热重分析法表征了两种水泥的水化过程和水化产物,分析了海水对HB-CSA水化过程和力学性能的影响。结果表明:海水拌和未明显影响HB-CSA的早期水化过程,海水拌和与海水养护未改变其主要水化产物类型;海水拌和显著加快了OPC的早期水化,海水中的氯盐与OPC的水化产物反应,导致水化氯铝酸钙(Friedel盐)的生成。海水拌和与海水养护对HB-CSA的抗压强度影响较小,但降低了OPC的后期抗压强度。海水养护对HB-CSA和OPC抗折强度的提高较为明显,钙矾石(AFt)含量的增加是抗折强度提高的主要原因。HB-CSA的水化产物中未见Ca(OH)2和单硫型水化硫铝酸钙(AFm),避免了海水侵入后过量CaSO4·2H2O和AFt生成造成的混凝土膨胀开裂和强度下降的危害。 相似文献
7.
高贝利特硫铝酸盐水泥的熟料煅烧及其强度 总被引:3,自引:0,他引:3
用粉煤灰、石灰石、石膏作原料,烧制了以贝利特(β-C2S)为主、无水硫铝酸钙(C4A3S)为辅的高贝利特硫铝酸盐水泥,其w(β-C2S)达60%、w(C4A3S) 30%,熟料中无C3S和C3A.分析了率值和煅烧制度对熟料矿物形成的影响,较佳的煅烧工艺参数是:碱度系数Cm为0.95~1.03,铝硫比P为3.32~3.65,煅烧温度1280~1340 ℃,保温时间45~70 min.试验表明C4A3S使水泥具有较高的早期强度,大量的β-C2S持续水化保证了水泥强度的稳定增长.水泥胶砂的1 d、3 d、7 d和28 d抗压强度分别为16.5 MPa、28.0 MPa、36.7 MPa和48.6 MPa.硬化水泥砂浆的总孔隙率低,最可几孔径小. 相似文献
8.
高贝利特硫铝酸盐熟料矿物组成优化 总被引:3,自引:0,他引:3
采用石灰石、矾土、黏土和石膏 4 种原料,制备了以贝利特、无水硫铝酸钙和铁相为主的高贝利特无水硫铝酸盐水泥(BCSA)熟料矿物体系,研究了其生料易烧性、熟料煅烧制度和熟料矿物优化配比等。结果表明:当 BCSA 熟料煅烧温度为 1280~1320 ℃时,可获得结晶度良好、形成数量较多的贝利特和无水硫铝酸钙矿物。在 BCSA 熟料矿物组成为 32%~42% C4A3S—、5%~9% C4AF、46%~56% C2S,石膏掺量为 12.5%时,水泥 28 d抗压强度达最佳,为 55MPa。此外,由于熟料烧成温度及氧化钙总含量(约 50%)均较低,BCSA 水泥在能耗和排放方面均比普通硅酸盐水泥低。 相似文献
9.
10.
设计了五种不同f-CaSO4/C4 A3 S的生料配比,研究了f-CaSO4含量变化对高贝利特硫铝酸盐水泥熟料烧成的影响.通过TG-DSC分析了高贝利特硫铝酸盐水泥熟料的形成过程,利用XRD、f-CaO含量分析得到了熟料的适宜煅烧制度,进一步用SEM观察了不同含量f-CaSO4对熟料矿物微观形貌影响,最后研究了f-CaSO4对高贝利特硫铝酸盐水泥熟料力学性能的影响.结果表明:高贝利特硫铝酸盐水泥熟料的适宜煅烧温度范围为1300~1400℃,保温时间为40 min;熟料中C2 S、C4 AF含量与设计值相一致,随着f-CaSO4/C4 A3 S增加,非晶固溶体有逐渐增多的趋势;随着f-CaSO4/C4 A3 S增加,熟料早期强度先增大后降低,后期强度逐渐增大,当f-CaSO4/C4 A3 S为0.4时有最高早期强度. 相似文献
11.
采用正交试验研究利用低品位铝矾土、铸造废砂、石灰石、石膏等原料制备高贝利特硫铝酸盐水泥的煅烧条件.对生料热稳定性、水泥熟料组成及其水化产物形貌等进行测试表征.可初步确定熟料的煅烧温度范围在1250~1360℃,该水泥熟料的主要矿物组成为贝利特和无水硫铝酸钙,用X-射线K值法定量分析熟料物相组成与理论计算值基本接近.该水泥的主要水化产物有钙矾石、水化硅酸钙凝胶、单硫型水化硫铝酸钙等.实验研究表明:煅烧温度1300℃,保温时间90 min,急冷,制得的高贝利特硫铝酸盐水泥凝结时间短,初凝时间30 min,终凝仅40 min,28 d水泥净浆强度可达65.4 MPa,胶砂强度与市售42.5硫铝酸盐水泥相比,早期强度比较接近,后期强度高出10%. 相似文献
12.
13.
14.
15.
研究了聚羧酸系高效减水剂(PCE)和萘系减水剂(FDN)对硫铝酸盐水泥净浆工作性能及力学性能影响,通过XRD和SEM检测手段对水化产物进行表征.结果表明:两种减水剂对硫铝酸盐水泥净浆流动度的影响存在饱和点;相比于FDN型减水剂,PCE型减水剂对硫铝酸盐水泥净浆具有更好的减水效率及分散能力.PCE型减水剂阻碍硫铝酸盐水泥净浆早期水化,并降低硫铝酸盐水泥净浆1 d抗压强度;FDN型减水剂能够加速硫铝酸盐水泥净浆早期水化,缩短初凝和终凝时间,提高硫铝酸盐水泥净浆1d抗压强度.两种减水剂对硫铝酸盐水泥净浆3d后抗压强度及水化产物种类均没有影响. 相似文献
16.
研究了粉煤灰(FA)及其掺量对硫铝酸盐水泥(CSA)浆体的凝结时间、抗压强度和化学收缩的影响规律,并通过XRD、SEM等方法对72 h龄期时的水化产物进行分析.结果表明,粉煤灰缩短了硫铝酸盐水泥的凝结时间,当粉煤灰掺量为40%时,初凝时间和终凝时间分别缩短了76 min和94 min;掺入粉煤灰使得硫铝酸盐水泥的抗压强度降低,但在28 d龄期时,粉煤灰掺量为20%的硫铝酸盐水泥复合浆体的抗压强度仅略微降低;在硫铝酸盐水泥体系中掺入粉煤灰时,其浆体化学收缩随着粉煤灰掺量的增加逐渐减小,当粉煤灰掺量为20%和40%时,72 h龄期时的化学收缩值分别为0.138 mL/g和0.088 mL/g,较未掺粉煤灰时分别降低了26%和49%;微观分析表明,掺入粉煤灰后,72 h龄期时的水化产物主要是钙矾石和水化硅酸钙凝胶,并未发现氢氧化钙晶体. 相似文献
17.
利用磷石膏分解率高的特点,将预先煅烧后分别达到73.82%和80.15%分解率的磷石膏与矾土和石灰石进行配料烧制贝利特硫铝酸盐熟料,探讨部分分解磷石膏用于制备贝利特硫铝酸盐水泥的可行性.理论计算结果表明,当磷石膏分解率达到80.15%,SO2可以达到有实用价值的收集浓度;试验结果表明,利用部分分解的磷石膏制备的贝利特硫铝酸盐水泥早期水化放热量偏低,硬度也略微低于天然石膏制备的贝利特硫铝酸盐水泥的硬度,但对早期强度无明显的不利影响.可以认为,部分分解磷石膏可以用于制备贝利特硫铝酸盐水泥. 相似文献