首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We describe a new approach for exploiting relevance feedback in content-based image retrieval (CBIR). In our approach to relevance feedback we try to capture more of the users’ relevance judgments by allowing the use of natural language like comments on the retrieved images. Using methods from fuzzy logic and computational intelligence we are able to reflect these comments into new targets for searching the image database. Such enhanced information is utilized to develop a system that can provide more effective and efficient retrieval.  相似文献   

3.
In this paper, a new framework called fuzzy relevance feedback in interactive content-based image retrieval (CBIR) systems is introduced. Conventional binary labeling scheme in relevance feedback requires a crisp decision to be made on the relevance of the retrieved images. However, it is inflexible as user interpretation of visual content varies with respect to different information needs and perceptual subjectivity. In addition, users tend to learn from the retrieval results to further refine their information requests. It is, therefore, inadequate to describe the user’s fuzzy perception of image similarity with crisp logic. In view of this, we propose a fuzzy relevance feedback approach which enables the user to make a fuzzy judgement. It integrates the user’s fuzzy interpretation of visual content into the notion of relevance feedback. An efficient learning approach is proposed using a fuzzy radial basis function (FRBF) network. The network is constructed based on the user’s feedbacks. The underlying network parameters are optimized by adopting a gradient-descent training strategy due to its computational efficiency. Experimental results using a database of 10,000 images demonstrate the effectiveness of the proposed method.
Kim-Hui Yap (Corresponding author)Email:
  相似文献   

4.
5.
In the last few years, we have seen an upsurge of interest in content-based image retrieval (CBIR)—the selection of images from a collection via features extracted from images themselves. Often, a single image attribute may not have enough discriminative information for successful retrieval. On the other hand when multiple features are used, it is hard to determine the suitable weighing factors for various features for optimal retrieval. In this paper, we present a relevance feedback framework with Integrated Probability Function (IPF) which combines multiple features for optimal retrieval. The IPF is based on a new posterior probability estimator and a novel weight updating approach. We perform experiments on 1400 monochromatic trademark images have been performed. The proposed IPF is shown to be more effective and efficient to retrieve deformed trademark images than the commonly used integrated dissimilarity function. The new posterior probability estimator is shown to be generally better than the existing one. The proposed novel weight updating approach by relevance feedback is shown to be better than both the existing scoring approach and the existing ratio approach. In experiments, 95% of the targets are ranked at the top five positions. By two iterations of relevance feedback, retrieval performance can be improved from 75% to over 95%. The IPF and its relevance feedback framework proposed in this paper can be effectively and efficiently used in content-based image retrieval.  相似文献   

6.
Query refinement and feature re-weighting are the two core techniques underlying the relevance feedback of content-based image retrieval. Most existing relevance feedback mechanisms generally model the user’s query target with a single query point and weight each extracted feature with a single importance factor. A designed estimation procedure then estimates the best query point and all importance factors by optimizing a formulated criterion which measures the goodness of the estimation. This formulated criterion simultaneously encapsulates all positive and negative examples supplied from the user’s feedback. Under such formulation, the positive and negative examples may contribute contradictorily to the criterion and sometimes may introduce higher difficulty in attaining a good estimation. In this paper, we propose a different statistical formulation to estimate independently two pairs of query points and feature weights from the positive examples and negative examples, respectively. These two pairs then define the likelihood ratio, a criterion term used to rank the relevance of all database images. This approach simplifies the criterion formulation and also avoids the mutual impeditive influence between positive examples and negative examples. The experimental results demonstrate that the proposed approach outperforms some other related approaches.
Wen-Kai TaiEmail:
  相似文献   

7.
In this paper, we propose a novel approach to content-based image retrieval with relevance feedback, which is based on the random walker algorithm introduced in the context of interactive image segmentation. The idea is to treat the relevant and non-relevant images labeled by the user at every feedback round as “seed” nodes for the random walker problem. The ranking score for each unlabeled image is computed as the probability that a random walker starting from that image will reach a relevant seed before encountering a non-relevant one. Our method is easy to implement, parameter-free and scales well to large datasets. Extensive experiments on different real datasets with several image similarity measures show the superiority of our method over different recent approaches.  相似文献   

8.
9.
The technique of relevance feedback has been introduced to content-based 3D model retrieval, however, two essential issues which affect the retrieval performance have not been addressed. In this paper, a novel relevance feedback mechanism is presented, which effectively makes use of strengths of different feature vectors and perfectly solves the problem of small sample and asymmetry. During the retrieval process, the proposed method takes the user’s feedback details as the relevant information of query model, and then dynamically updates two important parameters of each feature vector, narrowing the gap between high-level semantic knowledge and low-level object representation. The experiments, based on the publicly available 3D model database Princeton Shape Benchmark (PSB), show that the proposed approach not only precisely captures the user’s semantic knowledge, but also significantly improves the retrieval performance of 3D model retrieval. Compared with three state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval effectiveness only with a few rounds of relevance feedback based on several standard measures.
Biao LengEmail:
  相似文献   

10.
In content-based image retrieval (CBIR), relevant images are identified based on their similarities to query images. Most CBIR algorithms are hindered by the semantic gap between the low-level image features used for computing image similarity and the high-level semantic concepts conveyed in images. One way to reduce the semantic gap is to utilize the log data of users' feedback that has been collected by CBIR systems in history, which is also called “collaborative image retrieval.” In this paper, we present a novel metric learning approach, named “regularized metric learning,” for collaborative image retrieval, which learns a distance metric by exploring the correlation between low-level image features and the log data of users' relevance judgments. Compared to the previous research, a regularization mechanism is used in our algorithm to effectively prevent overfitting. Meanwhile, we formulate the proposed learning algorithm into a semidefinite programming problem, which can be solved very efficiently by existing software packages and is scalable to the size of log data. An extensive set of experiments has been conducted to show that the new algorithm can substantially improve the retrieval accuracy of a baseline CBIR system using Euclidean distance metric, even with a modest amount of log data. The experiment also indicates that the new algorithm is more effective and more efficient than two alternative algorithms, which exploit log data for image retrieval.  相似文献   

11.
Series feature aggregation for content-based image retrieval   总被引:1,自引:0,他引:1  
Feature aggregation is a critical technique in content-based image retrieval (CBIR) systems that employs multiple visual features to characterize image content. Most previous feature aggregation schemes apply parallel topology, e.g., the linear combination scheme, which suffer from two problems. First, the function of individual visual feature is limited since the ranks of the retrieved images are determined only by the combined similarity. Second, the irrelevant images seriously affect the retrieval performance of feature aggregation scheme since all images in a collection will be ranked. To address these problems, we propose a new feature aggregation scheme, series feature aggregation (SFA). SFA selects relevant images using visual features one by one in series from the images highly ranked by the previous visual feature. The irrelevant images will be effectively filtered out by individual visual features in each stage, and the remaining images are collectively described by all visual features. Experiments, conducted with IAPR TC-12 benchmark image collection (ImageCLEF2006) that contains over 20,000 photographic images and defined queries, have shown that the proposed SFA can outperform conventional parallel feature aggregation schemes.  相似文献   

12.
The effectiveness of content-based image retrieval (CBIR) systems can be improved by combining image features or by weighting image similarities, as computed from multiple feature vectors. However, feature combination do not make sense always and the combined similarity function can be more complex than weight-based functions to better satisfy the users’ expectations. We address this problem by presenting a Genetic Programming framework to the design of combined similarity functions. Our method allows nonlinear combination of image similarities and is validated through several experiments, where the images are retrieved based on the shape of their objects. Experimental results demonstrate that the GP framework is suitable for the design of effective combinations functions.  相似文献   

13.
Image searching is a creative process. We have proposed a novel image retrieval system that supports creative search sessions by allowing the user to organise their search results on a workspace. The workspace’s usefulness is evaluated in a task-oriented and user-centred comparative experiment, involving design professionals and several types of realistic search tasks. In particular, we focus on its effect on task conceptualisation and query formulation. A traditional relevance feedback system serves as a baseline. The results of this study show that the workspace is more useful in terms of both of the above aspects and that the proposed approach leads to a more effective and enjoyable search experience. This paper also highlights the influence of tasks on the users’ search and organisation strategy.  相似文献   

14.
15.
16.
An image representation method using vector quantization (VQ) on color and texture is proposed in this paper. The proposed method is also used to retrieve similar images from database systems. The basic idea is a transformation from the raw pixel data to a small set of image regions, which are coherent in color and texture space. A scheme is provided for object-based image retrieval. Features for image retrieval are the three color features (hue, saturation, and value) from the HSV color model and five textural features (ASM, contrast, correlation, variance, and entropy) from the gray-level co-occurrence matrices. Once the features are extracted from an image, eight-dimensional feature vectors represent each pixel in the image. The VQ algorithm is used to rapidly cluster those feature vectors into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to the object within the image. This method can retrieve similar images even in cases where objects are translated, scaled, and rotated.  相似文献   

17.
In this article, a brief review on texture segmentation is presented, before a novel automatic texture segmentation algorithm is developed. The algorithm is based on a modified discrete wavelet frames and the mean shift algorithm. The proposed technique is tested on a range of textured images including composite texture images, synthetic texture images, real scene images as well as our main source of images, the museum images of various kinds. An extension to the automatic texture segmentation, a texture identifier is also introduced for integration into a retrieval system, providing an excellent approach to content-based image retrieval using texture features.  相似文献   

18.
In order to improve the retrieval accuracy of content-based image retrieval systems, research focus has been shifted from designing sophisticated low-level feature extraction algorithms to reducing the ‘semantic gap’ between the visual features and the richness of human semantics. This paper attempts to provide a comprehensive survey of the recent technical achievements in high-level semantic-based image retrieval. Major recent publications are included in this survey covering different aspects of the research in this area, including low-level image feature extraction, similarity measurement, and deriving high-level semantic features. We identify five major categories of the state-of-the-art techniques in narrowing down the ‘semantic gap’: (1) using object ontology to define high-level concepts; (2) using machine learning methods to associate low-level features with query concepts; (3) using relevance feedback to learn users’ intention; (4) generating semantic template to support high-level image retrieval; (5) fusing the evidences from HTML text and the visual content of images for WWW image retrieval. In addition, some other related issues such as image test bed and retrieval performance evaluation are also discussed. Finally, based on existing technology and the demand from real-world applications, a few promising future research directions are suggested.  相似文献   

19.
In this paper, a growing hierarchical self-organizing quadtree map (GHSOQM) is proposed and used for a content-based image retrieval (CBIR) system. The incorporation of GHSOQM in a CBIR system organizes images in a hierarchical structure. The retrieval time by GHSOQM is less than that by using direct image comparison using a flat structure. Furthermore, the ability of incremental learning enables GHSOQM to be a prospective neural-network-based approach for CBIR systems. We also propose feature matrices, image distance and relevance feedback for region-based images in the GHSOQM-based CBIR system. Experimental results strongly demonstrate the effectiveness of the proposed system.  相似文献   

20.
In this paper a content-based image retrieval method that can search large image databases efficiently by color, texture, and shape content is proposed. Quantized RGB histograms and the dominant triple (hue, saturation, and value), which are extracted from quantized HSV joint histogram in the local image region, are used for representing global/local color information in the image. Entropy and maximum entry from co-occurrence matrices are used for texture information and edge angle histogram is used for representing shape information. Relevance feedback approach, which has coupled proposed features, is used for obtaining better retrieval accuracy. A new indexing method that supports fast retrieval in large image databases is also presented. Tree structures constructed by k-means algorithm, along with the idea of triangle inequality, eliminate candidate images for similarity calculation between query image and each database image. We find that the proposed method reduces calculation up to average 92.2 percent of the images from direct comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号