共查询到20条相似文献,搜索用时 78 毫秒
1.
二阶自抗扰控制器的参数简化 总被引:5,自引:0,他引:5
为了克服PID控制器自身具有的缺陷,在PID的基础上提出了自抗扰控制器(ADRC)。该控制器由跟踪微分器、扩张状态观测器和非线性状态误差反馈三部分组成,其控制效果优于经典PID控制器,但是参数众多、调节复杂。通过线性简化和参数整合建立简化的线性自抗扰控制器。MATLAB仿真表明,简化的线性自抗扰控制器参数调节过程大大简化,而控制性能并未受到明显影响。 相似文献
2.
3.
线性自抗扰控制器的稳定性研究 总被引:15,自引:0,他引:15
研究了线性扩张状态观测器(Extended state observer, ESO)的估计能力,并且分析了在线性自抗扰控制(Linear active disturbance rejection control, LADRC)下闭环系统的稳定性. 对于系统模型未知的情形, 给出了线性扩张观测器估计误差有界的证明, 并通过分析得出了如下结论: 在扩张状态观测器跟踪误差趋于零的前提下, 在线性自抗扰控制下的闭环系统可以实现对设定信号的精确跟踪以及输入-输出有界(Bounded input and bounded output, BIBO)稳定. 相似文献
4.
用模型补偿自抗扰控制器进行参数辨识 总被引:7,自引:3,他引:7
自抗扰控制器中扩张状态观测器的输出提供了进行系统参数辨识的足够信息,受控对象若有已知部分,把此部分补偿给扩张状态观测器输入项,能提高扩张状态观测器的逼近精度,从而也能提高其输出值来进行参数辨识的精度。 相似文献
5.
串联型扩张状态观测器构成的自抗扰控制器 总被引:13,自引:0,他引:13
利用自抗扰控制器控制m阶对象,需要调整扩张状态观测器的m+1个参数。结构和参数相同的m个二阶扩张状态观测器串联而成的串联型扩充状态观测器,具有m+1阶扩张状态观测器的功能。用其构成的自抗扰控制器参数易于调整,便于工程应用。 相似文献
6.
针对一类具有网络时滞小于采样周期的网络控制系统提出网络控制的主要问题是网络通信系统模型的不确定性导致控制性能不佳;针对这一问题,采用基于无模型的自抗扰算法,将网络环节和被控对象一同视为控制对象,将网络时滞作为被控对象的不确定性因素,利用扩张状态观测器对不确定性因素进行实时观测估计;Matlab/TrueTime网络控制实验表明:自抗扰控制方法能够有效地减小网络诱导时滞对控制系统的影响。 相似文献
7.
8.
自抗扰控制器能将被控对象的内、外“总扰动”进行估计并用前馈补偿的方法将其抵消,适于力矩电机因直接驱动所带来干扰的补偿与控制;针对测量噪声对线性自抗扰控制器观测器带宽的限制,提出了二阶线性自抗扰的相似结构,并结合三阶积分链式微分器对其效果进行了对比仿真验证;力矩电机的控制仿真实验表明,与二阶线性自抗扰算法相比,基于相似结构的改进的力矩电机控制,能在有测量噪声情况下兼顾系统跟踪精度、突加负载时抗扰动性. 相似文献
9.
10.
11.
As one of the most important actuators for gasoline direct injection technology, common rail systems provide the requested rail pressure for fuel injection. Special system characteristics, such as coupled discrete-continuous dynamic in the common rail system, limited measurable states, and time-varying engine operating conditions, impel the combination of advanced methods to obtain the desired injection pressure. Therefore, reducing the pressure fluctuation and satisfying engineering implementation have become noteworthy issues for rail pressure control (RPC) systems. In this study, the benchmark problem and the design specification of RPC proposed by 2018 IFAC E-CoSM Committee are introduced. Moreover, a common rail system model is provided to the challengers, and a traditional PI control is applied to show the problem behaviors. Finally, intermediate results of the challengers are summarized briefly. 相似文献
12.
推力矢量飞行器的自抗扰控制设计及控制分配 总被引:1,自引:0,他引:1
推力矢量飞行器往往需要在大功角等具有大不确定性和强非线性的区域高质量地完成飞行动作,因此,如何应对大范围不确定性是推力矢量飞行器控制设计的关键问题.另一方面,推力矢量飞行器包含多种控制输入并且不同控制输入具有不同物理特性.因此,控制输入分配也是推力矢量飞行器控制设计的关键问题.为了对付大范围的不确定性,本文引入虚拟控制量的概念,采用自抗扰控制技术实现对飞行过程中的总扰动的实时估计和补偿.进一步,考虑控制输入的物理约束条件,提出了保证虚拟控制量达到设计值并使得发动机能耗最小的控制输入分配方案.通过建立对应的优化问题,严格分析其最优解的性质并提出了有限步求解最优控制分配输入量的算法.在仿真环境下,提出的控制算法有效实现了推力矢量飞行器大功角区域的机动动作,并能应对大范围的气动参数不确定性. 相似文献
13.
Control of the common rail pressure in gasoline engines through an extended state observer based MPC
In this paper, a model predictive control (MPC) solution, assisted by extended state observer (ESO), is proposed for the common rail pressure control in gasoline engines. The rail pressure dynamic, nonlinear with large uncertainty, is modeled as a simple first order system. The discrepancy of the model from the real plant is lumped as ``total disturbance'', to be estimated in real-time by ESO and then mitigated in the nonlinear MPC, assuming the total disturbance does not change in the prediction horizon. The nonlinear MPC problem is solved using the Newton/generalized minimum residual (GMRES) algorithm. The proposed ESO-MPC solution, is compared with the conventional proportional-integral-differential (PID) controller, based on the high-fidelity model provided in the benchmark problem in IFAC-E-CoSM. Results show the following benefits from using ESO-MPC relative to PID (benchmark): 1) the disturbance rejection capability to fuel inject pulse step is improved by 12% in terms of recovery time; 2) the transient response of rail pressure is improved by 5% in terms of the integrated absolute tracking error; and 3) the robustness is improved without need for gain scheduling, which is required in PID. Additionally, increasing the bandwidth of ESO allows reducing the complexity of the model implemented in MPC, while maintaining the disturbance rejection performance at the cost of high noise-sensitivity. Therefore, the ESO-MPC combination offers a simpler and more practical solution for common rail pressure control, relative to the standard MPC, which is consistent with the findings in simulation. 相似文献
14.
15.
针对具有内部参数不确定性和外部扰动的海上船舶设计了航向自抗扰控制器,并解决了舵机模型中舵角的限幅和限速问题,基于滑模控制理论提出了反馈控制带宽的计算方法.采用频域分析的方法,系统地分析了自抗扰控制器对外部波浪扰动的抑制能力、模型参数不确定时的鲁棒性;结合作者实船工作经验以及系统动态特性与控制参数的关系,提出了船舶航向控制器参数的配置规律;最后以一艘57000吨级散货船为控制对象,验证了航向控制器的鲁棒性和本文所述参数配置规律的有效性.为将自抗扰控制算法应用于船舶自动舵设计提供理论依据和实践参考. 相似文献
16.
S. E. TALOLE 《控制理论与应用(英文版)》2018,16(4):314-323
Control of uncertain dynamical systems has been an area of active research for the past several decades and to this end,various robust control approaches have been proposed in the literature. The active disturbance rejection control (ADRC) representsone prominent approach that has been widely studied and applied for designing robust controllers in diverse areas of engineeringapplications. In this work, a brief review of the approach and some of its applications in aerospace are discussed. The resultsshow that the approach possesses immense potential to offer viable solution to reallife aerospace problems. 相似文献
17.
本文针对高阶时延系统同时存在系统不确定性和未知输入时延的情况,考虑控制器信号的复杂性问题,在动态面控制方法的基础上,引入自抗扰控制技术设计了自抗扰动态面控制器.利用反步法设计动态面控制信号,采用跟踪微分器对虚拟控制信号滤波,避免了由于对虚拟控制信号重复微分产生的"复杂性爆炸"问题;在控制信号的基础上叠加扰动补偿项,补偿项由扩张状态观测器实时在线估计产生,保证了控制信号的实时性,同时简化了控制器结构以便于实际应用.在闭环系统稳定性判别中运用李雅普诺夫理论做出详细分析.最后,数值仿真结果验证了所提出方法的有效性. 相似文献
18.
凹印机套色系统的自抗扰解耦控制 总被引:2,自引:0,他引:2
无轴凹印机套色系统的运行过程中存在各种形式的扰动,且各色组的套色误差通过张力传递相互耦合,严重影响系统的套准精度,必须进行解耦和抗扰控制.本文在建立了凹印机套色系统的近似数学模型的基础上,将扩张状态观测器与前馈相结合,提出了一种新的自抗扰控制策略.把一个强耦合、大扰动、模型不确定的复杂非线性系统动态补偿为近似的二阶线性系统,降低了系统的控制难度,改善了系统的动态性能,并使系统具有自抗扰的能力.仿真结果表明,与传统的前馈控制和非线性控制相比,该算法使系统控制误差的收敛速度加快,动态响应性能更优越,实现了色组间的解耦并使系统具有良好的抗扰性能. 相似文献
19.
The existing active disturbance rejection control (ADRC) method may not provide sufficient disturbance rejection to multiple mismatched disturbances for the fractional order systems. In this paper, a composite disturbance rejection approach is developed for a class of fractional order uncertain systems, by synthesizing the fractional order ADRC (FOADRC) approach and a disturbance observer (DO)-based compensation scheme. Taking advantage of more disturbance information and a filter structure, an improved DO is developed to achieve precise estimation of disturbances in the presence of sensor noises. In addition, a state transformation is developed to convert the system into a simple integral chain model with only matched disturbances. Then a composite control law is designed to compensate the disturbances and provide satisfying dynamic performance. The efficiency of the proposed method is demonstrated by a numerical simulation and an actual servo control simulation, as well as the comparison with two kinds of the existing ADRC methods and the commonly used integral sliding mode control (I-SMC) method. 相似文献
20.
Zhe Gao 《国际强度与非线性控制杂志
》2016,26(4):876-892
》2016,26(4):876-892
This paper investigates active disturbance rejection control involving the fractional‐order tracking differentiator, the fractional‐order PID controller with compensation and the fractional‐order extended state observer for nonlinear fractional‐order systems. Firstly, the fractional‐order optimal‐time control scheme is studied to propose the fractional‐order tracking differentiator by the Hamilton function and fractional‐order optimal conditions. Secondly, the linear fractional‐order extend state observer is offered to acquire the estimated value of the sum of nonlinear functions and disturbances existing in the investigated nonlinear fractional‐order plant. For the disturbance existing in the feedback output, the effect of the disturbance is discussed to choose a reasonable parameter in fractional‐order extended state observer. Thirdly, by this observed value, the nonlinear fractional‐order plant is converted into a linear fractional‐order plant by adding the compensation in the controller. With the aid of real root boundary, complex root boundary, and imaginary boot boundary, the approximate stabilizing boundary with respect to the integral and differential coefficients is determined for the given proportional coefficient, integral order and differential order. By choosing the suitable parameters, the fractional‐order active disturbance rejection control scheme can deal with the unknown nonlinear functions and disturbances. Finally, the illustrative examples are given to verify the effectiveness of fractional‐order active disturbance rejection control scheme. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献