首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
为了研究前缘凸脊结构对气膜冷却的影响规律,设计3种不同堵塞比的凸脊模型,研究气膜冷却效率随吹风比、堵塞比的变化规律,并运用数值模拟方法分析再附区域的流场分布。研究结果表明,与典型的圆柱形气膜孔相比,前缘凸脊的存在可以使气膜冷却效率提高130%以上;前缘凸脊在大吹风比下的作用更加明显;堵塞比B为0.21时气膜冷却效率最高;数值模拟结果与试验结果吻合得较好;在特定范围内,吹风比的增大或凸脊堵塞比的增大有利于提高气膜再附区域的展向覆盖,进而提高气膜冷却效率。  相似文献   

2.
带横向槽的气膜冷却结构冷却性能数值研究   总被引:1,自引:0,他引:1  
通过改变气膜孔出口槽的位置和形状,在吹风比M=0.5、M=1.0和M=1.5的条件下,对5种不同结构的气膜孔平均冷却效率进行了数值模拟研究,结果表明横向槽能够显著地提高气膜孔的平均冷却效率.  相似文献   

3.
致密多孔层板冷却结构研究   总被引:2,自引:0,他引:2  
应用FLUENT软件对内部绕流形式不同的7种层板结构进行流动与换热的耦合计算,分析扰流柱、冲击孔、气膜孔之间的排布方式以及堵塞比等参数对层板冷却效率与相对压力损失的影响规律。研究表明,层板结构以冲击孔和气膜孔呈现长菱形分布、扰流柱呈梭子形排布的方式较好,压力损失小,综合冷却效率可以提高10%左右;在进气流量相同的情况下,不同的层板结构压力损失相差不大,压力损失主要发生在从环腔经气膜壁进入火焰筒流出的过程中;增加扰流柱的数量或者是增大扰流柱的直径都会带来堵塞比的增大,层板的相对压力损失会随之增加,综合冷却效率增大,一定程度上强化了换热。  相似文献   

4.
叉车的冷却系统担负着发动机和液力传动系统的冷却作用,冷却效果的好坏直接关系着叉车能否正常工作和发动机的使用寿命,因此正确分析叉车冷却系统各部件间的作用关系,对经常出现高温现象的叉车冷却系统进行合理的设计改进意义重大。我公司生产的CPCD50/60/70AA系列叉车普遍存在油温偏高问题,在南方地区使用时尤为严重。影响冷却系统冷却效果的因素有:(1)水箱的冷却面积;(2)风扇的直径、叶片数和转速;(3)风扇距离水箱的距离;(4)风扇罩的形状。总之让尽量多的风量通过尽可能大的水箱冷却面积可以得到好的冷却效果。针对以上影响因素我们认…  相似文献   

5.
层板结构冷却机理的数值模拟研究   总被引:1,自引:0,他引:1  
应用商业软件对一种典型的层板结构选取多个单元进行了流动和换热的耦合计算,考虑了燃气侧及冷气侧流动的影响,燃气及冷气的流动方式模拟层板叶片中真实的流动方式。网格划分采用非结构性网格,湍流模型采用k-ω双方程模式,速度与压力采用SIMPLE算法耦合求解。获得了层板内部的流动和换热情况,流体域、固体域的温度信息。发现冲击孔及气膜孔内部的流动不具有对称性,各换热面的换热系数分布也不均匀,燃气侧局部区域出现负热流现象。分析了层板燃气侧、内部及冷气侧的流动和换热特性及其对层板冷却有效性的影响,得到了层板冷却有效性随吹风比变化的曲线。  相似文献   

6.
为研究旋转造成的非稳定性对高压涡轮动叶气膜冷却的影响,建立了3维涡轮叶栅通道模型,应用周期性边界条件数值模拟了不同转速下涡轮动叶表面气膜冷却效率和换热系数的分布,冷气进口与涡轮前总压比为1.07,温度比为0.5。转速增加,叶片前缘滞止线从压力面移向吸力面,气膜出流从吸力面移向压力面;压力面气膜冷却效率上升,换热系数下降;吸力面冷却效率先上升后降低;换热系数下降。与静止相比,旋转不稳定性增大了叶片表面气膜覆盖面积。  相似文献   

7.
8.
针对三气(燃气、冷气、大气)、两壁(隔热屏、燃烧室外壁)、一膜(隔热屏冷气膜)的燃烧室物理模型,建立了它们之间气动与传热互相耦合的隔热屏二维壁温计算模型.模型中考虑了燃气、空气的动力粘性系数和导热系数随温度的变化,以及燃气温度轴向的非线形变化.利用该模型针对某燃烧室设计进行壁温预测,并进行了三种增大冷气量方法的冷却效果比较,研究了同比例减小孔径和孔间距的冷却特性.计算结果表明:每增加1%冷气量,平均隔热屏温度降低约30K,同比例减小孔径和孔间距可以不增大冷气用量而降低隔热屏壁温,孔径减半,平均温度降低40K左右,孔径越小降低幅度越大.  相似文献   

9.
针对燃烧室新型迷宫复合冷却结构,以F luent商业软件为计算平台,采用数值模拟方法研究了该冷却结构外侧壁面上冷却孔开孔角度分别为-60°、-30°、+30°、+60°时内外壁温的分布情况,获得了其壁温及冷却效率的分布规律。研究表明,开孔角度为+30°时冷却效率最高。计算结果对于迷宫复合冷却结构的设计和冷却性能试验研究都具有一定的理论指导意义。  相似文献   

10.
王玉刚  黄翔 《流体机械》2019,47(4):69-75
模拟研究不同结构参数和运行参数对叉流式露点蒸发冷却器(DPEC)冷却性能的影响。优化后的结构参数为:通道宽度宜取4 mm,干、湿通道长度均宜取1.2 m,开孔率宜取0.2,换热面积比宜取0.2;与优化后的结构参数相匹配的运行参数为:空气流量比宜取1,相应的一、二次空气流量均宜低于916 m~3/h。模拟研究我国8种典型气候条件对叉流式DPEC冷却性能的影响,结果显示冷却器在我国中西部气候条件下能够提供较低温度的送风(18.9~23.9℃)。  相似文献   

11.
这里在大尺寸低速叶栅传热风洞中,对某型涡轮动叶表面有无气膜冷却的换热情况进行了详细的实验研究,实验结果表明,不同孔位出流的换热由于孔排下游表面来流速度及叶片表面曲率的不同而有着不同的规律,即主流雷诺数对叶片表面特别是压力面和前缘区域的换热系数比的影响较小,吹风比对换热系数影响较大,并且随气膜孔位置和来流雷诺数的变化而情况复杂。  相似文献   

12.
叶片前缘气膜冷却数值模拟   总被引:4,自引:0,他引:4  
为了研究叶片前缘区域的换热特性,采用非结构化网格和realizable紊流模型,求解三维N-S方程,对前缘带有一排冷气孔的涡轮叶片进行了换热特性的数值模拟.分析了不同动量比,湍流度,孔间距及径向角下冷气射流的运动规律,换热分布以及冷效分布特点.结果表明,当动量比Ⅰ大于1时,在相同孔型下,动量比越高,冷效越大.在相同动量比下,孔间距越小,冷效越大.但动量比,孔间距及径向角对换热系数影响不大.当湍流度增加时,换热系数增加而冷效降低.沿展向,气膜孔中心区域冷效较高,两孔之间区域较低;而换热系数则相反,气膜孔中心区域换热系数较小,两孔之间区域较大.  相似文献   

13.
Heat transfer coefficients were measured in a channel with one side dimpled surface. The sphere type dimples were fabricated, and the diameter (D) and the depth of dimple was 16 mm and 4 mm, respectively. Two channel heights of about 0.6D and 1.2D, two dimple configurations were tested. The Reynolds number based on the channel hydraulic diameter was varied from 30000 to 50000. The improved hue detection based transient liquid crystal technique was used in the heat transfer measurement. Heat transfer measurement results showed that high heat transfer was induced downstream of the dimples due to flow reattachment. Due to the flow recirculation on the upstream side in the dimple, the heat transfer coefficient was very low. As the Reynolds increased, the overall heat transfer coefficients also increased. With the same dimple arrangement, the heat transfer coefficients and the thermal performance factors were higher for the lower channel height. As the distance between the dimples became smaller, the overall heat transfer coefficient and the thermal performance factors increased. This paper was recommended for publication in revised form by Associate Editor Yong Tae Kang Jae Su Kwak received his B.S. and M.S. degrees in Mechanical Engineering from Korea University in 1996 and 1998, respectively. He then received his Ph.D. from Texas A&M University in 2002. Dr. Kwak is currently an Assistant Professor at the School of Aerospace and Mechanical Engineering at Korea Aerospace University in Goyang-City, Korea. His main research interests include gas turbine heat transfer, compact heat exchanger, and enhancement of heat transfer.  相似文献   

14.
对某型涡轮平面叶栅,在不同的主流雷诺数下,以多种喷射方式和不同的流量比喷射冷气,研究型面压力分布及出口气流场参数的变化。试验结果表明,冷气入射对叶片表面静压分布几乎没有影响,只对冷气孔位置附近压力产生影响,相对来说,压力面入射冷气导致的变化小于吸力面。随进口马赫数升高,在相同的冷气流量比下流动总压降低。然而,在相同的马赫数下,随着冷气流量比增大,压力面入射跟吸力面入射导致的总压变化规律不一样。  相似文献   

15.
涡轮叶片非对称扇形气膜孔冷却特性数值研究   总被引:2,自引:0,他引:2  
针对涡轮导向叶片吸力面和压力面上特定位置上的单排气膜孔,在吹风比为0.44~2.67范围内,数值研究非对称扇形气膜孔的冷却特性。基准对称扇形孔侧向扩展角为20°,后向扩展角为10°。研究结果表明,在扇形总扩展角相等的条件下,非对称型扇形气膜孔的气膜出流穿透能力与对称型扇形气膜孔基本相当,但气膜出流侧向覆盖范围较对称型扇形气膜孔有一定程度的改善,在高吹风比下扇形气膜孔侧向扩展角的影响较为显著。相对而言,非对称扇形气膜孔改善气膜冷却的效果在涡轮叶片压力面侧能得到更好的体现。  相似文献   

16.
Heat/mass transfer characteristics on the near-tip blade surface under combustor-level high inlet turbulence have been investigated within a high-turning turbine rotor passage by using the naphthalene sublimation technique. The inlet turbulence intensity and length scale are 14.7% and 80 mm, respectively. The tip gap-to-chord ratio is changed to beh/c = 0.74, 1.47, and 2.94 percents. Increasingh/c results not only in higher heat/mass transfer in the pressure-side tip region but also in more convective transport on the pressure surface even far away from the tip edge. Severe heat/mass transfer is always observed in the suction-side tip-leakage flow region which can be divided into two distinct high transport regions. There is a local maximum of heat/mass transfer along the trailing-edge centerline. This arises from the interaction of a tip-leakage vortex with a trailing-edge vortex shedding. Comparisons of the present data forh/c = 2.94 percents with the previous low turbulence one show that there is a large discrepancy of heat/mass transfer in the pressure-side near-tip area, which diminishes with departing from the tip edge. The suction-side heat/mass transfer in the tip-leakage flow region is less influenced by the high inlet turbulence than that at the mid-span. The leading-edge heat/mass transfer under the high inlet turbulence is always higher than that in the low turbulence case, while there is no big difference in the trailing-edge heat/mass transfer between the two cases.  相似文献   

17.
气冷涡轮叶片气热耦合数值模拟研究   总被引:3,自引:0,他引:3  
采用气热耦合计算方法进行气冷涡轮气动性能-传热分析,这种方法无需指定对流换热系数和热流密度等经验参数,只须要给出气流与固体之间的流动换热物理条件.利用该方法对某三维涡轮导叶进行数值模拟,计算结果表明,气热耦合计算的叶片温度场更接近真实情况,针对该叶片尾缘烧蚀问题,利用气热耦合计算方法,研究了叶片尾缘冷却设计方案,通过对在尾缘开缝冷却方案的分析计算,结果表明,该设计方案可以使得尾缘最高温度下降了130K.  相似文献   

18.
横向槽宽度对气膜孔冷却性能数值研究   总被引:1,自引:0,他引:1  
应用数值模拟的方法,研究了带横向槽气膜孔冷却结构的槽宽度变化对其平均冷却效率的影响.在吹风比为0.5,1.0,1.5和2.0的条件下,对槽宽度为1.75D,2.5D,3.5D和4.5D四种冷却结构进行了数值模拟,通过分析气膜孔下游的反向涡对、平均冷却效率和壁面冷却效率大于0.343的区域,得出了气膜孔出口开槽宽度变化对二次流的贴壁性能和平均冷却效率的影响规律,并分析了槽宽度变化对平均冷却效率影响的机理.  相似文献   

19.
Thermoforming is one of the most versatile and economical processes available for polymer products, but cycle time and production cost must be continuously reduced in order to improve the competitive power of products. In this study, water spray cooling was simulated to apply to a cooling system instead of compressed air cooling in order to shorten the cycle time and reduce the cost of compressed air used in the cooling process. At first, cooling time using compressed air was predicted in order to check the state of mass production. In the following step, the ratio of removed energy by air cooling or water spray cooling among the total removed energy was found by using 1-D analysis code of the cooling system under the condition of checking the possibility of conversion from 2-D to 1-D problem. The analysis results using water spray cooling show that cycle time can be reduced because of high cooling efficiency of water spray, and cost of production caused by using compressed air can be reduced by decreasing the amount of the used compressed air. The 1-D analysis code can be widely used in the design of a thermoforming cooling system, and parameters of the thermoforming process can be modified based on the recommended data suitable for a cooling system of thermoforming. This paper was recommended for publication in revised form by Associate Editor Dongsik Kim Zhen-Zhe Li received his B.S. degree in Mechanical Engineering from Yanbian University, China, in 2002. He then received his M.S. degree in Aerospace Engineering from Konkuk University, South Korea, in 2005. He then received his Ph.D. degree in Mechanical Engineering from Chonnam National University, South Korea, in 2009. Dr. Li is currently a Researcher of the Department of Mechanical Engineering, Chonnam National University, South Korea. Dr. Li’s research interests include applied heat transfer, fluid mechanics and optimal design of thermal and fluid systems. Kwang-Su Heo received his B.S. degree in Mechanical Engineering from Chonnam National University, South Korea, in 1998. He then received his M.S. and Ph.D. degrees in Mechanical Engineering from Chonnam National University, South Korea, in 2003 and 2008, respectively. Dr. Heo is currently a Post-doctorial Researcher of the Department of Mechanical Engineering, KAIST(Korean Advanced Institute of Science and Technology), South Korea. Dr. Heo’s research interests include applied heat transfer, fluid mechanics and thermal analysis of superconductor. Dong-Ji Xuan received his B.S. degree in Mechanical Engineering from Harbin Engineering University, China, in 2000. He then received his M.S. degree in Mechanical Engineering from Chonnam National University, South Korea, in 2006. He is currently a Ph.D. candidate of the Department of Mechanical Engineering, Chonnam National University, South Korea. His research interests include control & optimization of PEM fuel cell system, dynamics & control, mechatronics. Seoung-Yun Seol received his B.S. degree in Mechanical Design from Seoul National University, South Korea, in 1983. He then received his M.S. degree in Mechanical Engineering from KAIST(Korean Advanced Institute of Science and Technology), South Korea, in 1985. He then received his Ph.D. degree in Mechanical Engineering from Texas Tech University, USA, in 1993. Dr. Seol is currently a Professor of the School of Mechanical and Systems Engineering, Chonnam National University, South Korea. Dr. Seol’s research interests include applied heat transfer, fluid mechanics and thermal analysis of superconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号