首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
塑性变形对铝合金弹性模量的影响   总被引:4,自引:1,他引:4  
回弹是影响弯曲件精度的主要障碍 ,而弹性模量是影响回弹的重要因素之一。一般工程应用中都把弹性模量作为常数 ,而实际上弹性模量随塑性变形的进展在不断发生变化。为了准确把握弹性模量值在塑性变形过程中的变化规律 ,针对应用广泛的铝合金材料 ,采用静力学实验方法 ,对常用的退火LY12及退火LF2 1铝合金的弹性模量在塑性变形中的变化情况进行了实验研究。得到了弹性模量值随塑性变形程度及加载方式变化的规律 ,并分别归纳为数学模型。  相似文献   

2.
《Acta Materialia》2003,51(12):3495-3509
The mechanical behaviors of consolidated iron with average grain sizes from tens of nanometers to tens of microns have been systematically studied under uniaxial compression over a wide range of strain rates. In addition to the well-known strengthening due to grain size refinement, grain size dependence is observed for several other key properties of plastic deformation. In contrast with conventional coarse-grained Fe, high-strength nanocrystalline and submicron-grained Fe exhibit diminished effective strain rate sensitivity of the flow stress. The observed reduction in effective rate sensitivity is shown to be a natural consequence of low-temperature plastic deformation mechanisms in bcc metals through the application of a constitutive model for the behavior of bcc Fe in this strain rate and temperature regime. The deformation mode also changes, with shear localization replacing uniform deformation as the dominant deformation mode from the onset of plastic deformation at both low and high strain rates. The evolution and multiplication of shear bands have been monitored as a function of plastic strain. The grain size dependence is discussed with respect to possible enhanced propensity for plastic instabilities at small grain sizes.  相似文献   

3.
在变形温度800~1200℃和应变速率0.01~50s-1下,利用Gleeble-3800热模拟试验机对Aermet100钢的高温变形本构关系与微观组织演变进行了研究。结果表明,增加应变速率和降低变形温度都能提高材料的流动应力,延迟动态再结晶发生,使变形材料表现出加工硬化和动态回复。运用位错理论研究了微观组织和流动应力曲线的变化规律并做出了合理的解释。在压缩实验的变形条件下变形激活能为489.10kJ/mol。确定了峰值应力、变形温度和应变速率之间的双曲正弦模型的本构关系。  相似文献   

4.
In order to improve the prediction capability of spring-back in the computational analysis of sheet metal forming processes, a stress–strain constitutive formulation of non-linear combined hardening rule has been proposed in this paper according to non-linear kinematic hardening theory of Lemaitre and Chaboche and Hill's 1948 anisotropic yielding function. Traditionally, Young's modulus is considered as a constant in engineering application and numerical simulation. In fact, it decreases with plastic deformation. So the effect of the change of Young's modulus with plastic strain on spring-back is considered in the constitutive model. The algorithm of stress update is elastic prediction, plastic correcting and radial returning. Numerical results and experimental results show that the proposed constitutive model significantly improves the prediction accuracy of spring-back.  相似文献   

5.
Mg-Cu-Y块体金属玻璃的塑性变形特性   总被引:6,自引:0,他引:6  
孙琴  陈刚  王宁  李宝贵  张伟 《热加工工艺》2005,(4):56-57,72
通过对Mg-Cu-Y块体金属玻璃在深过冷液体区间塑性变形特性的研究,探讨了影响其塑性变形的因素及其影响规律。结果表明,加载温度和时间均对其塑性变形有明显的影响,在深过冷液体区间,要达到合适的变形量,加载温度和时间必须适中;Mg-Cu-Y块体金属玻璃在压缩条件下能够发生流变,较好地复制模具表面的显微形貌。同时,在加载条件下,Mg-Cu-Y块体金属玻璃更容易发生晶化。  相似文献   

6.
AZ80镁合金变形特性及管材挤压数值模拟研究   总被引:1,自引:0,他引:1  
利用Gleeble热模拟机研究了AZ80合金的高温变形特性。结果表明,流变应力取决于变形温度和变形速率。当应变速率一定时,流变应力随变形温度的升高而降低;当温度一定时,流变应力随着应变速率的升高而增大。根据AZ80镁合金真应力-真应变曲线,建立了其流变应力模型。采用刚塑性有限元法对AZ80镁合金管材挤压过程进行热力耦合数值模拟,并分析了高温挤压成形过程中变形力及金属流动规律,着重探讨了变形温度和挤压速度等挤压工艺参数对挤压力、应变场以及应力场的分布及变化情况的影响。模拟的结果为AZ80镁合金管材挤压工艺参数的制定、优化提供了科学依据。  相似文献   

7.
Cyclic plastic deformation of stainless steel SUS 304 is experimentally investigated at low temperature of liquid nitrogen (77 K) under various cyclic loading conditions Thin walled tubular specimens are subjected to cyclic loading under constant strain ranges. At low temperature, the material shows remarkable hardening by cyclic loading comparing with cyclic loading at room temperature. The hysteresis curves of stress-strain relations by cyclic loading are saturated by increasing the cycle numbers. The saturation tendency depends on loading direction. The saturated stress values are related with cumulative plastic strain of cyclic loading. The prestraining is given at 77 K by axial and torsional loadings, and subsequent cyclic loading under constant strain range is conducted at 77 K. The cyclic stress-strain curves are saturated by increasing cyclic numbers. At small cyclic numbers, cyclic plastic deformation depends on the prestrain direction. The directional effect of pre-strain on cyclic loading becomes small with increasing number of cycles.  相似文献   

8.
The hot compressive flow behavior of the cast Mg–9.5Zn–2.0Y alloy as a function of strain was analyzed, and the degree of dependence of the parameters (A: material constant, n 2: stress exponent, Q c: activation energy for plastic flow and α: stress multiplier) of the constitutive equation (\(\dot \varepsilon = A{\left[ {\sinh \left( {\alpha \sigma } \right)} \right]^{{n_2}}}\exp \left( {\frac{{ - {Q_c}}}{{RT}}} \right)\)) upon the strain was examined in a systematic manner. This is to explore the possibility of representing the hot compressive deformation behavior of metallic alloys in a simple way by using a reduced number of strain-dependent constitutive parameters. The analysis results for several different cases can be interpreted as follows: (1) Q c can be treated as being strain-independent, which is physically sensible; (2) while only the microstructure changes as a function of strain at low flow stresses, as the flow stress increases, the power-law creep deformation and power-law breakdown mechanisms change; (3) the regime where only A is strain dependent expanded to higher strain rates and lower temperatures as the strain increased, suggesting that the number of the strain-dependent parameters decreases as the initial microstructure is refined by dynamic recrystallization, and the microstructure approaches a steady state.  相似文献   

9.
以室温单轴拉伸实验与晶体塑性有限元相结合的方法,通过拉伸取向控制,研究了AZ31镁合金拉伸变形过程中孪生行为、织构演化规律、塑性各向异性之间的关系。基于率相关晶体塑性本构理论,建立了滑移和孪生机制耦合的具有不同取向的晶体塑性本构模型,引入孪晶体积分数研究孪生对AZ31镁合金塑性变形过程中织构演变和力学性能的影响。结果表明,2种不同取向的样品在塑性变形过程中呈现出明显不同的织构演变规律,表现出明显的各向异性。轴向拉伸时孪生被抑制,孪晶激活体积分数低,径向拉伸时孪晶极易产生,孪晶激活体积分数高。轴向试样在整个塑性变形过程中{0001}极图偏移较小,径向试样因大量拉伸孪晶的开启,使得{0001}棱柱面织构的极密度逐渐向RD的正反方向发生明显偏移。  相似文献   

10.
考虑金属材料晶体细观塑性变形流动的各向异性性质以及晶体滑移的非线性运动硬化,以Voronoi多晶集合体作为材料的代表性单元(RVE),用晶体塑性模型描述金属材料的细观本构关系,对多晶纯Cu进行了晶粒尺度的对称应变循环细观分析.证实了本文模型和方法可以用于描述多晶金属材料不同应变幅的循环滞回特性,并可以用于估计金属材料在循环加载过程中后继屈服面形状和曲率与预加载方向相关的变化.分析发现:在对称应变循环中,随循环数增加,多晶材料宏观拉伸方向的内部细观应变分量的统计变异系数(COV)不断增加,材料内部晶格的不均匀细观转动也越来越显著.这些结果表明,循环过程中应变分布差异和晶格转动差异逐渐增大,从而导致材料内部微结构越来越不均匀.  相似文献   

11.
许扬  夏承钰  田炜  张冰毅 《焊接学报》2004,25(4):126-128
对硅单晶炉炉盖内壁发生的腐蚀渗漏做了模拟试验。将塑性变形后经过不同温度低温时效,再对进行弹性变形的试样做了耐腐蚀能力的对比检验。结果表明,随时效温度升高,腐蚀裂纹没有减少反而增多,因此,经冲压或卷制造成大比例弹性变形的奥氏体不锈钢构件不宜进行300~450℃的低温时效处理。  相似文献   

12.
以C194铜合金为研究对象,利用Gleeble-1500D热模拟试验机进行了室温单向拉伸实验,获得了应变速率分别为0.01,0.1,1和10 s^-1的应力-应变曲线,构建了C194铜合金室温本构方程,验证了本构方程的准确性。基于Deform-3D有限元数值模拟平台,建立了C194铜合金轧制冷塑性变形有限元模型,并在相同工艺条件下进行了轧制变形实验,结果表明:除第5道次模拟结果与实验的厚度相对误差值为11%之外,其余误差值均小于10%,验证了轧制冷塑性变形有限元模型的可靠性和精确性。为研究C194铜合金板带变形规律及工艺优化奠定了基础。  相似文献   

13.
钢管径向摩擦搭接焊加载力数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
采用ABAQUS软件,以45钢为径向环,对钢管径向摩擦焊在假设变形速率前提下分析焊接界面温度场和径向环的加载力情况.计算采用了Johnson-cook幂硬化弹塑性模型,并考虑材料热物性与摩擦系数随温度变化.结果表明,在不考虑径向环与夹具之间传热的前提下,在焊接界面形成了以夹具体为中心的椭圆状温度梯度分布和以夹具体空隙为中心的条带状温度梯度分布,两处的最高温度达到1 260℃和1 050℃的前提下得到了加载力曲线.为了简化焊接工艺过程将加载力曲线人为拟合为定值三段加压过程,重新代入模型反复修正计算使界面温度场和径向环变形过程与焊接过程吻合良好.  相似文献   

14.
W. Wang  C. B. Jiang  K. Lu 《Acta Materialia》2003,51(20):6169-6180
The deformation behavior of (1 1 1), (1 1 0) and (0 0 1) oriented Ni3Al single crystals was investigated by means of nanoindentation. Upon loading with the blunt and sharp indenter tips, the crystal deforms elastically in the initial stage followed by plastic deformation of which the onset is characterized by an obvious displacement burst (or pop-in) in the loading curve. This pop-in corresponds to homogeneous nucleation of dislocation loops under the indenter. When a sharp indenter tip was used, a major pop-in can be identified at a large load (7 mN for (1 1 1) crystal) in the plastic regime on loading. The major pop-in may be correlated with the special dislocation structure of the K–W locks in the Ni3Al crystals that are formed during loading. The pop-in behavior during plastic deformation of Ni3Al crystals is found to be closely related to the crystal orientation, pre-existing dislocation density in the sample surface, loading rate, and holding (at a constant sub-critical load) time as well. Pop-ins were also observed at critical loads in unloading processes.  相似文献   

15.
研究了形变对Ni-Mn-Ga合金马氏体相变及其组织形态的影响,并应用马氏体相变热力学和动力学探讨了适当塑性变形后马氏体相变滞后得以大幅度提高的微观本质。结果表明,随着应变量的增加,马氏体相变温度几乎保持不变,而其逆相变温度则迅速升高,塑性应变导致储存在界面处的弹性应变能的释放是塑性变形提高合金相变滞后的主导因素。  相似文献   

16.
《Acta Materialia》2007,55(7):2319-2327
Recent experiments have shown that inhomogeneous deformation in amorphous alloys critically depends on the environmental temperature and the applied strain rate, and that the temperature field inside the shear-band can rise up to the glass transition temperature. A free-volume-based, thermo-viscoplastic constitutive law is developed in which the thermal transport equation includes contributions from the heating from plastic work and the heat conduction. For homogeneous deformation, the instantaneous temperature rise during the strain softening stage can lead to thermal softening and promote the initiation of shear bands. A linear stability analysis is carried out to examine the conditions for the unstable growth of temperature fluctuations. It is found out that the short-wavelength fluctuations, the amplitudes of which would decay at low strain rate and moderately high environmental temperature (but still much lower than the glass transition temperature), become unstable at high strain rate and low temperature, so that the resulting shear-band spacing will be shorter. A deformation mechanism map is constructed to delineate this transition of inhomogeneous deformation from coarse to fine shear-band arrangements. The theoretical results agree well with a nanoindentation experiment where there is varying applied strain rate and environmental temperature and with a microindentation experiment in which the evolution of the effective strain rate during loading influences the spatial distribution of the shear-band spacing observed using the bonded interface technique.  相似文献   

17.
A constitutive model for hot deformation of a medium-carbon spring steel has been developed and validated using isothermal compression experiments at monotonic and abruptly changed strain rate conditions, providing data for the flow stress and softening kinetics. The integrated deformation-softening constitutive model is based on the two hypotheses: (a) instantaneous response of the microstructure to varying temperature–strain rate conditions and (b) invariance of the kinetics of different strain states having equal effective plastic strain. It has been implemented in a FEM code and applied to bar and rod hot rolling schedules. The predictions for the plain medium-carbon steel considered indicate that dynamic (DRX) and metadynamic (MDRX) recrystallisation are possible to occur in both the roughing and finishing mills. A comparison for the same rolling schedule applied to a medium-carbon multialloyed steel shows that its higher resistance to DRX cannot prevent recrystallisation in the intermediate mill, but it can in the finishing mill if there is no significant strain accumulation.  相似文献   

18.
Sintering of ceramic films on a solid substrate is an important technology for fabricating a range of products, including solid oxide fuel cells, micro-electronic PZT films and protective coatings. There is clear evidence that the constrained sintering process is anisotropic in nature. This paper presents a study of the constrained sintering deformation using an anisotropic constitutive law. The state of the material is described using the sintering strains rather than the relative density. In the limiting case of free sintering, the constitutive law reduces to a conventional isotropic constitutive law. The anisotropic constitutive law is used to calculate sintering deformation of a constrained film bonded to a rigid substrate and the compressive stress required in a sinter-forging experiment to achieve zero lateral shrinkage. The results are compared with experimental data in the literature. It is shown that the anisotropic constitutive law can capture the behaviour of the materials observed in the sintering experiments.  相似文献   

19.
The glide of screw dislocations with non-planar dislocation cores dominates the plastic deformation behavior in body-centered cubic iron. This yields a strong strain rate and temperature dependence of the flow stress, the breakdown of Schmid’s law and a dependence of dislocation mobility on stress components that do not contribute to the mechanical driving force of dislocation glide. We developed a constitutive plasticity model that takes all these effects into account. The model is based on the crystal plasticity approach and parameterized by performing molecular statics calculations using a semi-empirical potential. The atomistic studies yield quantitative relations between local stress tensor components and the mobility of dislocations. Together with experimental stress–strain curves obtained for two different orientations of iron single crystals taken from the literature, the constitutive law is completely parameterized. The model is validated by comparing numerical single crystal tension tests for a third orientation to the equivalent experimental data from the literature. We also provide results for the temperature and strain rate dependence of the new atomistically informed constitutive model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号