首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
铸钢表面电火花沉积层摩擦磨损性能   总被引:3,自引:0,他引:3  
采用新型电火花沉积设备,把WC-4Co陶瓷硬质合金材料沉积在铸钢材料上,制备了电火花沉积合金涂层,用SEM、XRD等技术研究了沉积层的物相、微观组织结构、元素分布、显微硬度及室温高温耐磨性能及磨损机理。结果表明:沉积层主要由Fe3W3C、Co3W3C和Fe2C等相组成;沉积层与基体呈冶金结合,过渡层出现一些柱状晶和树枝状晶组织结构,沉积层中细小的Fe3W3C和Co3W3C等硬质相颗粒弥散分布于Fe2C基体上。沉积层的平均显微硬度为1803.2 HV;室温下沉积层的耐磨性和300℃高温条件下沉积的耐磨性分别比同样条件下铸钢材料的磨损性能提高了2.5倍和3.4倍;不论室温还是300℃高温条件下沉积层的磨损机理主要是粘着磨损、疲劳磨损、氧化磨损和磨粒磨损的综合作用,细小的弥散分布的硬质相是沉积层硬度及耐磨性提高的主要因素。  相似文献   

2.
铸钢材料电火花表面沉积WC-4Co涂层的组织与性能   总被引:5,自引:2,他引:3  
采用电火花沉积工艺,在铸钢表面制备了WC-4Co沉积涂层,采用X射线衍射仪、扫描电镜、显微硬度计等对沉积层的相结构、显微组织、显微硬度及耐磨性能进行了分析.结果表明:沉积层主要由Co3W3C、Fe3W3C、W2C、Fe7W6等相组成;沉积层与基体呈冶金结合,Fe7W6、W2C等硬质相弥散分布于沉积层中,部分区域硬质相达到了纳米颗粒尺寸;沉积层的平均硬度为1517HV0.3,约是基体硬度(502 HV0.3)的3倍;其耐磨性能比基体提高了2.4倍;沉积层的主要磨损机制为疲劳磨损,细小的弥散分布的硬质相是沉积层硬度以及耐磨性能提高的主要因素.  相似文献   

3.
采用新型电火花沉积设备,将亚微米WC-4Co陶瓷硬质合金材料沉积在铸钢材料上,制备电火花沉积合金涂层,利用SEM和XRD等技术研究沉积层与基体间的界面行为,分析沉积层的表面润湿性、物相形成机理、微观组织结构、界面元素分布、界面结合机理和显微硬度变化等。结果表明:电火花沉积技术可以在金属基体表面制造出微纳米非晶高熔点强化层。铸钢表面沉积层主要由Fe3W3C、Co3W3C、Si2W和Fe2C等相组成;沉积层与基体呈冶金结合,过渡层中出现一些柱状晶和等轴晶的组织结构,沉积层中细小的Fe2C和Si2W等硬质相颗粒弥散分布于Fe3W3C和Co3W3C沉积层上。沉积层的厚度大于20μm,沉积层的平均显微硬度为1803.2 HV,细小弥散分布的硬质相是沉积层硬度提高的主要因素。  相似文献   

4.
轧辊表面电火花沉积涂层的耐磨性   总被引:1,自引:0,他引:1  
采用电火花沉积工艺,用WC陶瓷硬质合金在铸钢轧辊表面制备了一层合金涂层。采用X射线衍射仪、扫描电镜、显微硬度计等对沉积层的相结构、显微组织、显微硬度及耐磨性能进行了分析。结果表明:沉积层主要由Co3W3C、Fe3W3C、W2C、Si2W等相组成;沉积层与基体呈冶金结合,细小的硬质相弥散分布于沉积层中;沉积层的平均硬度为1915 HV0.3,约是基体硬度(352 HV0.3)的5.4倍;其室温耐磨性能比基体提高了2.1倍,高温耐磨性能比基体提高了1.9倍。室温下沉积层的主要磨损机理为磨粒磨损;高温下沉积层的主要磨损机理为粘着磨损、氧化磨损和疲劳磨损。  相似文献   

5.
铸钢轧辊亚微米WC-4Co电火花沉积涂层高温性能   总被引:4,自引:0,他引:4       下载免费PDF全文
用新型电火花沉积设备,把WC-4Co陶瓷硬质合金材料沉积在铸钢轧辊材料上,制备了电火花沉积合金涂层,用SEM和XRD等技术研究了沉积层在300 ℃的高温耐磨性和800 ℃高温氧化100 h后氧化膜形貌、组织结构和高温抗氧化性能.结果表明,沉积层厚度为20~30 μm,沉积层由Fe3W3C,Co3W3C,Si2W和W2C等物相组成.300 ℃高温条件下沉积层的耐磨性比基体提高了3.4倍,300 ℃高温条件下沉积层的磨损机理主要是粘着磨损、疲劳磨损、氧化磨损和磨粒磨损的综合作用.800 ℃高温条件下沉积层氧化100 h后的氧化膜的厚度约为10~20 μm;氧化膜主要由Fe3O4,Fe2O3,W20O58和Si物相组成;800 ℃高温下沉积层抗氧化性能比基体的抗氧化性能提高了2.6倍.细小弥散分布的硬质相提高了沉积层的抗高温磨损性能和抗高温氧化性能.  相似文献   

6.
采用新型电火花设备在铸钢表面制备了YG8涂层,采用SEM、XRD技术研究其微观组织和耐磨性能。结果表明:沉积层主要由Co3W3C、Fe3W3C、Fe3Mo3C、WC1 x和Fe7W6C等相组成;沉积层与基体冶金结合,细晶碳化物相弥散分布在沉积层中,能提高沉积层的硬度,平均硬度为1 896.8HV,比基体硬度提高了5倍;沉积层磨损性能是基体的3.4倍,沉积层磨损机理主要是粘着磨损、颗粒磨损和氧化磨损的综合作用;沉积时骤热骤冷过程中形成的细晶粒硬质相是提高沉积层硬度和耐磨性的主要因素。  相似文献   

7.
采用电火花沉积方法将YG8电极材料沉积在球墨铸铁轧辊材料上,制备了WC沉积涂层,研究了其微观组织及耐磨性能.结果表明:沉积层主要由Fe_3W_3C、Co_3W_3C、W_2C和Fe_7W_6等相组成,沉积层与基体呈冶金结合,Fe_7W_6、W_2C等硬质相弥散分布于沉积层中,部分区域硬质相达到了纳米颗粒尺寸;沉积层硬度分布不均匀,平均硬度为1759 HV0.3;沉积层具有优异的耐磨性,其磨损性能是基体的3.7倍;沉积层的磨损机理以粘着磨损和疲劳磨损为主,细小的弥散分布的硬质相是沉积层硬度以及耐磨性提高的主要因素.  相似文献   

8.
采用激光熔覆工艺和电火花沉积工艺在Q235钢上熔覆铁基合金粉末和WC陶瓷硬质合金,形成复合涂层.采用X射线衍射仪、扫描电镜、显微硬度计等对复合涂层的相结构、显微组织、显微硬度及耐磨性能进行了分析.结果表明:复合涂层主要是由Fe3W3C、Co3W3C、Si2W、W2C和(Fe0.51Mn0.46 Ni0.03)6C等相组成;复合涂层与基体呈冶金结合,复合涂层中电火花区域中细小的硬质相弥散分布于沉积层中;复合涂层的厚度为140~160 μm,其中电火花沉积区域约为40μm,激光熔覆工艺的涂层厚度为100~120 μm;电火花沉积层的硬度最高可达1262.9 HV,平均硬度为1151.6 HV,电火花沉积区域与激光熔覆区域之间的过渡区域的显微硬度为884.8 HV,激光熔覆区域的显微硬度平均值为578.3 HV;复合涂层的耐磨性较基体耐磨性提高2.3倍,强化层的磨损机理主要是磨粒磨损、粘着磨损和氧化磨损.  相似文献   

9.
采用新型电火花沉积设备,把WC-8Co陶瓷硬质合金材料沉积在铸钢材料上,制备了电火花沉积合金涂层,用SEM、XRD等技术研究了沉积层在500℃的高温耐磨性和800℃高温氧化100 h后氧化膜形貌图、组织结构和高温抗氧化性能。结果表明:沉积层厚度为20~30μm。500℃高温条件下沉积层的耐磨性比基体提高了3.3倍,500℃高温条件下沉积层的磨损机理主要是粘着磨损、疲劳磨损、氧化磨损和磨粒磨损的综合作用。800℃高温条件下沉积层氧化100 h后的氧化膜的厚度约为10μm;氧化膜主要由FeFe_2O_4、Fe_2O_3、Fe_5C_2和Fe_2W物相组成;800℃高温下沉积层抗氧化性能比基体的抗氧化性能提高了4.8倍。细小弥散分布的硬质相和致密的氧化膜极大提高了沉积层的抗高温磨损性能和抗高温氧化性能。  相似文献   

10.
采用新型电火花沉积设备,把WC-15Co陶瓷硬质合金材料沉积在铸钢材料上,制备了电火花沉积合金涂层,用SEM、XRD等技术研究沉积层在500℃的高温耐磨性和800℃高温氧化100 h后的氧化膜形貌、组织结构和高温抗氧化性能。结果表明:沉积层厚度约为30μm。500℃高温条件下,沉积层的耐磨性比基体的耐磨性提高2.7倍,沉积层的磨损机理主要是粘着磨损、疲劳磨损、氧化磨损和磨粒磨损的综合作用;800℃高温条件下,沉积层氧化100 h后的氧化膜的厚度约为10~30μm,氧化膜主要由FeFe_2O_4、W_(20)O_(58)和CFe_(2.5)物相组成,沉积层的抗氧化性能比基体的提高3.6倍。细小弥散分布的硬质相和致密的氧化膜极大提高沉积层的抗高温磨损性能和抗高温氧化性能。  相似文献   

11.
通过电火花沉积技术在P20模具钢表面制备了Fe基涂层,利用SEM,XRD及摩擦磨损试验机等分析了涂层的组织结构、显微硬度及耐磨性能。结果表明:电火花沉积Fe基涂层组织均匀、致密;涂层中靠近界面处的组织为柱状枝晶,而涂层中上部组织为超细晶粒。涂层的平均硬度为637.1HV0.1,相比基体提高了1倍;涂层耐磨性优于基体,涂层中弥散分布的Cr7C3,CrB及Fe3C等硬质是Fe基涂层硬度及耐磨性提高的主要原因。涂层的磨损机理主要为磨粒磨损的微切削和疲劳磨损。  相似文献   

12.
A new laser-texturing method, laser coating texturing, combining surface-laser alloying and texturing was proposed. A thin film of alloy powder was sprayed on the surface before it was textured and alloy elements were introduced into the coating with this method. Experiments of laser texturing and micro-alloying of composite Co-based WC–TiC sintered-carbide coating were performed by pulse laser. Microstructures, roughness and phase compositions of the processed coating were analyzed while its hardness distribution and wear resisting property were also investigated. The results show that the processed coating is metallurgical bonded with the substrate without crack and porosity and mainly composed of Ti, Co, TiC, WC, W2C, Co2C, CoCx. New phases α-W2C, Co3W3C, Co6W6C, CCo2W4 are formed with W decomposed from WC. Structure in the laser-melted zone is mainly cellular and dendritic. The coating is of high micro-hardness, 1000 HV0.2, and has excellent wear resistance, about 1/4 of the wear rate of the substrate. Fatigue wear and grain abrasion of hard particle are the main abrasion mechanisms of the coating through the friction and wear tests. The depth and height of textured craters can be increased and the wear resisting property of textured surface can be improved with the proposed method.  相似文献   

13.
利用粉末喷射激光熔覆以球形硼铁粉末为原材料成功制备了 Fe2B 金属间化合物涂层。 采用金相显微镜 (OM)、 X 射线衍射仪 (XRD)、 扫描电镜 ( SEM)、 电子探针 (EPMA)、 显微维氏硬度计及摩擦磨损试验机对涂层的组织与性能进行了表征。 结果表明: 当激光比能控制在 3. 00×10 8 kJ/ m 2 左右时, 采用粉末喷射激光熔覆能制备较为理想的 Fe2B 金属间化合物涂层。 制备的单层涂层的物相为 Fe2B 与 Fe, 显微硬度峰值达 1360 HV0. 05 , 涂层组织中大量弥散分布的 Fe2B 相的生成是涂层具有高硬度的原因。 制备的多层涂层与基体具有良好的冶金结合, 从基体到涂层, 组织经历了一个由平面外延生长组织到胞状晶再到等轴晶的演变过程, 涂层稳定摩擦因数为 0. 385, 磨损率为 5. 67×10 -15 m 3 / N·m,表现出良好的耐磨性能, 磨损机制为磨粒磨损与疲劳磨损。  相似文献   

14.
Microstructure and Wear Performance of Arc Sprayed Fe-FeB-WC Coatings   总被引:1,自引:0,他引:1  
Two Fe-FeB-WC coatings were deposited on the Q235 steel substrate by arc spraying. The microstructure and the abrasive wear performance of the coatings were characterized by x-ray diffraction (XRD) and scanning electron microscope (SEM). The wear mechanisms of the coatings were examined. It was found that Fe-Cr alloy and Fe2B are present in the coating as the main phases. The results showed that adding hard particle powders could obviously increase the hardness and wear resistance of the coatings. The average microhardness of the coatings was about 870 to 920 HV0.1. The coatings exhibited excellent abrasive wear resistance, being 3.3 to 4.8 times higher than that of arc sprayed 3Cr13 coating.  相似文献   

15.
Q235钢表面激光熔注WC涂层的微观组织及耐磨性   总被引:4,自引:2,他引:2  
采用激光熔注技术对材料进行表面强化具有显著的优点.将WC陶瓷作为注入颗粒,在Q235钢表面制备激光熔注层.对激光熔注工艺进行了系统研究.利用SEM,EDS,XRD等手段分析熔注层的微观组织结构,对熔注层的硬度和耐磨性能进行了测试.结果表明,成功的激光熔注过程需要严格的工艺参数条件,采用优化的工艺参数时激光熔注WC表面层成形良好.熔注层主要由WC,W2C以及M6C(Fe3W3C-Fe4W2C)强化相组成,Fe3W3C分别以颗粒之间基体上的树枝晶和依附WC颗粒形成的反应层两种形态存在于熔注层中;熔注层平均硬度约为母材硬度的4倍,熔注层摩擦系数不超过基体的1/4,熔注层耐磨性良好.  相似文献   

16.
魏琪  高明  李辉  卢兰志 《焊接学报》2010,31(11):65-68
将碳化硼(B4C)陶瓷粉末和其它合金元素与304L不锈钢带轧制成粉芯丝材,采用电弧喷涂技术制备金属陶瓷复合涂层.研究了B4C在电弧喷涂中的应用.利用XRD,SEM对涂层的形貌、相组成和磨损表面进行了分析.利用自行设计的高温磨粒磨损装置和高温冲蚀设备分别评价了B4C对涂层耐高温磨粒磨损性能和耐高温冲蚀性能的影响.结果表明,粉芯丝材喷涂工艺良好,B4C陶瓷与粉芯中其它组分反应,可以形成含Fe3B,CrB,FexN i23-xB6,Fe23(C,B)6,(Cr,Fe)7C3和Fe3C等硬质相的复合涂层,大幅度提高了涂层的硬度和耐磨耐冲蚀性能.  相似文献   

17.
Tungsten carbide has a wide range of applications, mainly cemented carbides made of WC and Co, as wear resistant materials. However, the high cost of WC–Co powders encourages the use of a substrate to manufacture a functionally graded material (FGM) tool made of WC–Co and a tool steel. These materials join the high wear resistance of the cemented carbide and the toughness of the steel. This work deals with the study interaction of the WC–Co and H13 steel to design a functionally graded material by means of spark plasma sintering (SPS). The SPS, a novel sintering technique reaching the consolidation of the powders at relatively low temperatures and short dwell times, is a promising technique in processing materials. In this study, WC, H13 steel, WC–Co, WC–H13 steel and WC–Co–H13 steel bulk samples were investigated using scanning electron microscopy and X-ray diffraction techniques to evaluate the phase transformations involved during SPS consolidation process. The W2C and W3Fe3C precipitation were identified after the SPS consolidation of the WC and WC–H13 steel samples, respectively. The precipitation of W4Co2C was also identified in the WC–Co and WC–Co–H13 steel samples. The WC–H13 steel and WC–Co–H13 steel were also evaluated after heat treatments at 1100 °C for 9 h, which enhanced the chemical interaction and the precipitation of W3Fe3C and W4Co2C, respectively.  相似文献   

18.
为了提高TC4合金的耐磨性能,采用激光热喷涂技术在其表面制备了Co30Cr8W1.6C3Ni1.4Si涂层。通过扫描电子显微镜(SEM)和X射线衍射(XRD)分析了涂层的形貌和物相,并通过摩擦磨损实验研究了涂层在PAO+2.5% MoDTC(质量分数)油中的磨损行为。结果表明,激光热喷涂的Co30Cr8W1.6C3Ni1.4Si涂层主要由Ti、WC1-x、CoO、Co2Ti4O和CoAl相组成,在涂层界面形成冶金结合。在激光功率为1000、1200和1400 W时所制备的涂层平均摩擦因数分别为0.151、0.120和0.171,其对应的磨损率分别为1.17×10-6、1.33×10-6和2.80×10-6 mm3?N-1?m-1,磨损机理为磨粒磨损,其枝晶尺寸对降磨起主要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号