共查询到20条相似文献,搜索用时 0 毫秒
1.
Fast Filtering and Smoothing for Multivariate State Space Models 总被引:1,自引:0,他引:1
This paper investigates a new approach to diffuse filtering and smoothing for multivariate state space models. The standard approach treats the observations as vectors, while our approach treats each element of the observational vector individually. This strategy leads to computationally efficient methods for multivariate filtering and smoothing. Also, the treatment of the diffuse initial state vector in multivariate models is much simpler than in existing methods. The paper presents details of relevant algorithms for filtering, prediction and smoothing. Proofs are provided. Three examples of multivariate models in statistics and economics are presented for which the new approach is particularly relevant. 相似文献
2.
This article develops asymptotic theory for estimation of parameters in regression models for binomial response time series where serial dependence is present through a latent process. Use of generalized linear model estimating equations leads to asymptotically biased estimates of regression coefficients for binomial responses. An alternative is to use marginal likelihood, in which the variance of the latent process but not the serial dependence is accounted for. In practice, this is equivalent to using generalized linear mixed model estimation procedures treating the observations as independent with a random effect on the intercept term in the regression model. We prove that this method leads to consistent and asymptotically normal estimates even if there is an autocorrelated latent process. Simulations suggest that the use of marginal likelihood can lead to generalized linear model estimates result. This problem reduces rapidly with increasing number of binomial trials at each time point, but for binary data, the chance of it can remain over 45% even in very long time series. We provide a combination of theoretical and heuristic explanations for this phenomenon in terms of the properties of the regression component of the model, and these can be used to guide application of the method in practice. 相似文献
3.
Abstract. A state space model with diffuse initial conditions is considered. A simple and direct proof of the algorithm for computing the likelihood function and minimum mean square estimators of the state is given 相似文献
4.
Suppose a vector autoregressive moving‐average model is estimated for m observed variables of primary interest for an application and n–m observed secondary variables to aid in the application. An application indicates the variables of primary interest but usually only broadly suggests secondary variables that may or may not be useful. Often, one has many potential secondary variables to choose from but is unsure which ones to include in or exclude from the application. The article proposes a method called weighted‐covariance factor decomposition (WCFD), comparable to Stock and Watson's method here called principle‐components factor decomposition (PCFD), for reducing the secondary variables to fewer factors to obtain a parsimonious estimated model that is more effective in an application. The WCFD method is illustrated in the article by forecasting quarterly observed U.S. real GDP at monthly intervals using monthly observed four coincident and eight leading indicators from the Conference Board ( http://www.conference‐board.org ). The results show that root mean‐squared errors of GDP forecasts of PCFD‐factor models are 0.9–11.3% higher than those of WCFD‐factor models especially as estimation‐forecasting periods pass from the pre‐2007 Great Moderation through the 2007–2009 Great Recession to the 2009–2016 Slow Recovery. 相似文献
5.
LEAVE-K-OUT DIAGNOSTICS IN STATE-SPACE MODELS 总被引:1,自引:0,他引:1
Tommaso Proietti 《时间序列分析杂志》2003,24(2):221-236
Abstract. The paper derives an algorithm for computing leave- k -out diagnostics for the detection of patches of outliers for stationary and nonstationary state-space models with regression effects. The algorithm is based on a reverse run of the Kalman filter on the smoothing errors and is both efficient and easy to implement. The US index of industrial production for textiles is used to illustrate the application of the algorithm. 相似文献
6.
Hamilton (A standard error for the estimated state vector of a state-space model. J. Economet. 33 (1986), 387–97) and Ansley and Kohn (Prediction mean squared error for state space models with estimated parameters. Biometrika 73 (1986), 467–73) have both proposed corrections to the naive approximation (obtained via substitution of the maximum likelihood estimates for the unknown parameters) of the Bayesian prediction mean squared error (MSE) for state space models, when the model's parameters are estimated from the data. Our work extends theirs in that we propose enhancements by identifying missing terms of the same order as that in their corrections. Because the approximations to the MSE are often subject to a frequentist interpretation, we compare our proposed enhancements with their original versions and with the naive approximation through a simulation study. For simplicity, we use the random walk plus noise model to develop the theory and to get our empirical results in the main body of the text. We also illustrate the differences between the various approximations with the Purse Snatching in Chicago series. Our empirical results show that (i) as expected, the underestimation in the naive approximation decreases as the sample size increases; (ii) the improved Ansley–Kohn approximation is the best compromise considering theoretical exactness, bias, precision and computational requirements, though the original Ansley–Kohn method performs quite well; finally, (iii) both the original and the improved Hamilton methods marginally improve the naive approximation. These conclusions also hold true with the Purse Snatching series. 相似文献
7.
Abstract. A class of autoregressive moving‐average (ARMA) models proposed by Jørgensen and Song [Journal of Applied Probability (1998), vol. 35, pp. 78–92] with exponential dispersion model margins are useful to deal with non‐normal stationary time series with high‐order autocorrelation. One property associated with the class of models is that the projection process takes the exact form of the classical Box and Jenkins ARMA representation, leading to considerable ease to establish theories. This paper focuses on the issue of parameter estimation for such models, which has not been thoroughly investigated in Jørgensen and Song's paper. The key of the proposed approach is to treat the residual process associated with the projection essentially as a measurement error, which enables us to formulate directly an ARMA representation for the observed time series. The parameter estimation therefore becomes straightforward using the existing methods for the Box and Jenkins ARMA models such as the quasi‐likelihood method. The approach is illustrated by simulation studies and by an analysis of myoclonic seizure counts. 相似文献
8.
Bustos and Yohai proposed a class of robust estimates for autoregressive moving-average (ARMA) models based on residual autocovariances (RA estimates). In this paper an affine equivariant generalization of the RA estimates for vector ARMA processes is given. These estimates are asymptotically normal and, when the innovations have an elliptical distribution, their asymptotic covariance matrix differs only by a scalar factor from the covariance matrix corresponding to the maximum likelihood estimate. A Monte Carlo study confirms that the RA estimates are efficient under normal errors and robust when the sample contains outliers. A robust multivariate goodness-of-fit test based on the RA estimates is also obtained. 相似文献
9.
Abstract. Haugh [Journal of the American Statistical Association (1976) Vol. 71, pp. 378–85] developed an approach to the problem of testing non‐correlation (at all leads and lags) between two univariate time series. Haugh's tests however have low power against two series which are related over a long distributed lag when individual lag coefficients are relatively small. As a remedy, Koch and Yang [Journal of the American Statistical Association (1986) Vol. 8, pp. 533–44] proposed an alternative method that performs better than Haugh's under such dependencies. A multivariate extension of Haugh's procedure was proposed by El Himdi and Roy [The Canadian Journal of Statistics (1997) Vol. 25, pp. 233–56], but suffers the same weaknesses as the original univariate method. We develop here an asymptotic test generalizing Koch and Yang's method to the multivariate case. Our method includes El Himdi and Roy's as a special case. Based on the same idea, we also suggest a generalization of the El Himdi and Roy procedure for testing causality in the sense of Granger [Econometrica (1969) Vol. 37, pp. 424–38] between two multivariate series. A Monte Carlo study is conducted, which indicates that our approach performs better than El Himdi and Roy's for a wide range of models. Both procedures are applied to the problem of testing the absence of correlation between Canadian and US economic indicators, and to a brief study of causality between money and income in Canada. 相似文献
10.
This paper is concerned with the marginal models associated with a given multivariate first-order autoregressive model. A general theory is developed to determine when reductions in the known orders of the marginal models will occur. When the auto-regressive coefficient matrix has repeated eigenvalues, there may be global reductions in the marginal models. Zeros in the eigenvectors and generalized eigenvectors of the auto-regressive coefficient matrix lead to local reductions in the marginal models. The case when the autoregressive parameter matrix has systematic zeros is also investigated. 相似文献
11.
Godambe's (1985) theorem on optimal estimating equations for stochastic processes is applied to non-linear time series estimation problems. Examples are considered from the usual classes of non-linear time series models. A recursive estimation procedure based on optimal estimating equations is provided. It is also shown that pre-filtered estimates can be used to obtain the optimal estimate from a non-linear state-space model. 相似文献
12.
Brajendra C. Sutradhar 《时间序列分析杂志》2012,33(3):458-467
In a time‐series regression setup, multinomial responses along with time dependent observable covariates are usually modelled by certain suitable dynamic multinomial logistic probabilities. Frequently, the time‐dependent covariates are treated as a realization of an exogenous random process and one is interested in the estimation of both the regression and the dynamic dependence parameters conditional on this realization of the covariate process. There exists a partial likelihood estimation approach able to deal with the general dependence structures arising from the influence of both past covariates and past multinomial responses on the covariates at a given time by sequentially conditioning on the history of the joint process (response and covariates), but it provides standard errors for the estimators based on the observed information matrix, because such a matrix happens to be the Fisher information matrix obtained by conditioning on the whole history of the joint process. This limitation of the partial likelihood approach holds even if the covariate history is not influeced by lagged response outcomes. In this article, a general formulation of the auto‐covariance structure of a multinomial time series is presented and used to derive an explicit expression for the Fisher information matrix conditional on the covariate history, providing the possibility of computing the variance of the maximum likelihood estimators given a realization of the covariate process for the multinomial‐logistic model. The difference between the standard errors of the parameter estimators under these two conditioning schemes (covariates Vs. joint history) is illustrated through an intensive simulation study based on the premise of an exogenous covariate process. 相似文献
13.
Paolo Gorgi 《时间序列分析杂志》2018,39(2):150-171
This paper proposes a new class of integer‐valued autoregressive models with a dynamic survival probability. The peculiarity of this class of models lies in the specification of the survival probability through a stochastic recurrence equation. The proposed models can effectively capture changing dependence over time and enhance both the in‐sample and out‐of‐sample performance of integer‐valued autoregressive models. This point is illustrated through an empirical application to a real‐time series of crime reports. Additionally, this paper discusses the reliability of likelihood‐based inference for the class of models. In particular, this study proves the consistency of the maximum likelihood estimator and a plug‐in estimator for the conditional probability mass function in a misspecified model setting. 相似文献
14.
The aggregation/disaggregation problem has been widely studied in the time series literature. Some main issues related to this problem are modelling, prediction and robustness to outliers. In this paper we look at the modelling problem with particular interest in the local level and local trend structural time series models together with their corresponding ARIMA(0, 1, 1) and ARIMA(0, 2, 2) representations. Given an observed time series that can be expressed by a structural or autoregressive integrated moving-average (ARIMA) model, we derive the necessary and sufficient conditions under which the aggregate and/or disaggregate series can be expressed by the same class of model. Harvey's cycle and seasonal components models (Harvey, Forecasting, Structural Time Series Models and the Kalman Filter , Cambridge: Cambridge University Press, 1989) are also briefly discussed. Systematic sampling of structural and ARIMA models is also discussed. 相似文献
15.
B. L. Shea 《时间序列分析杂志》1987,8(1):95-109
Abstract. The algorithm proposed here is a multivariate generalization of a procedure discussed by Pearlman (1980) for calculating the exact likelihood of a univariate ARMA model. Ansley and Kohn (1983) have shown how the Kalman filter can be used to calculate the exact likelihood function when not all the observations are known. In Shea (1983) it is shown that this algorithm is much quicker than that of Ansley and Kohn (1983) for all ARMA models except an ARMA (2, 1) and a couple of low-order AR processes and therefore when we have no missing observations this algorithm should be used instead. The Fortran subroutine G13DCF in the NAG (1987) Library fits a vector ARMA model using an adaptation of this algorithm. Experience in the use of this routine suggests that having reasonably good initial estimates of the ARMA parameter matrices, and in particular the residual error covariance matrix, can not only substantially reduce the computing time but more important improve the convergence properties of the minimization procedure. We therefore propose a method of calculating initial estimates of the ARMA parameters which involves using a generalization of the concept of inverse cross covariances from the univariate to the multivariate case. Finally theory is put into practice with the fitting of a bivariate model to a couple of real-life time series. 相似文献
16.
Abstract. This paper presents exact recursions for calculating the mean and mean square error matrix of the state vector given the observations for the multi-variate linear Gaussian state-space model in the case where the initial state vector is (partially) diffuse. 相似文献
17.
We consider the structural change in a class of discrete valued time series, which the conditional distribution belongs to the one‐parameter exponential family. We propose a change point test based on the maximum likelihood estimator of the model's parameter. Under the null hypothesis (of no change), the test statistic converges to a well‐known distribution, allowing the calculation of the critical value of the test. The test statistic diverges to infinity under the alternative, meaning that the test has asymptotic power one. Some simulation results and real data applications are reported to show the effectiveness of the proposed procedure. 相似文献
18.
Abstract. A conditionally heteroscedastic model, different from the more commonly used autoregressive moving average–generalized autoregressive conditionally heteroscedastic (ARMA‐GARCH) processes, is established and analysed here. The time‐dependent variance of innovations passing through an ARMA filter is conditioned on the lagged values of the generated process, rather than on the lagged innovations, and is defined to be asymptotically proportional to those past values. Designed this way, the model incorporates certain feedback from the modelled process, the innovation is no longer of GARCH type, and all moments of the modelled process are finite provided the same is true for the generating noise. The article gives the condition of stationarity, and proves consistency and asymptotic normality of the Gaussian quasi‐maximum likelihood estimator of the variance parameters, even though the estimated parameters of the linear filter contain an error. An analysis of six diurnal water discharge series observed along Rivers Danube and Tisza in Hungary demonstrates the usefulness of such a model. The effect of lagged river discharge turns out to be highly significant on the variance of innovations, and nonparametric estimation approves its approximate linearity. Simulations from the new model preserve well the probability distribution, the high quantiles, the tail behaviour and the high‐level clustering of the original series, further justifying model choice. 相似文献
19.
An exact small-sample test is developed for testing the hypothesis that a regression coefficient is constant against the alternative that it is generated by a random walk process. The test is mean- and scale-invariant and approximates the most powerful invariant test against any specific alternative. It thus outperforms tests previously given in the literature. Computationally efficient algorithms are given to compute the test statistic and its distribution using a modified version of the Kalman filter. 相似文献
20.
In this paper, we develop a Bartlett correction for the likelihood ratio statistic used to test hypotheses about parameters of a Gaussian stationary and invertible model belonging to the ARMA (autoregressive moving average) family. Alternative hypotheses with and without disturbance parameters are considered. The correction formulae are written in matrix form with the advantage of being easily implemented with the aid of some symbolic or numerical matrix language. Some simulation results are also presented. 相似文献