首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics simulations are a principal tool for studying molecular systems. Such simulations are used to investigate molecular structure, dynamics, and thermodynamical properties, as well as a replacement for, or complement to, costly and dangerous experiments. With the increasing availability of computational power the resulting data sets are becoming increasingly larger, and benchmarks indicate that the interactive visualization on desktop computers poses a challenge when rendering substantially more than millions of glyphs. Trading visual quality for rendering performance is a common approach when interactivity has to be guaranteed. In this paper we address both problems and present a method for high‐quality visualization of massive molecular dynamics data sets. We employ several optimization strategies on different levels of granularity, such as data quantization, data caching in video memory, and a two‐level occlusion culling strategy: coarse culling via hardware occlusion queries and a vertex‐level culling using maximum depth mipmaps. To ensure optimal image quality we employ GPU raycasting and deferred shading with smooth normal vector generation. We demonstrate that our method allows us to interactively render data sets containing tens of millions of high‐quality glyphs.  相似文献   

2.
Compared with its competitors such as the bounding volume hierarchy, a drawback of the kd‐tree structure is that a large number of triangles are repeatedly duplicated during its construction, which often leads to inefficient, large and tall binary trees with high triangle redundancy. In this paper, we propose a space‐efficient kd‐tree representation where, unlike commonly used methods, an inner node is allowed to optionally store a reference to a triangle, so highly redundant triangles in a kd‐tree can be culled from the leaf nodes and moved to the inner nodes. To avoid the construction of ineffective kd‐trees entailing computational inefficiencies due to early, possibly unnecessary, ray‐triangle intersection calculations that now have to be performed in the inner nodes during the kd‐tree traversal, we present heuristic measures for determining when and how to choose triangles for inner nodes during kd‐tree construction. Based on these metrics, we describe how the new form of kd‐tree is constructed and stored compactly using a carefully designed data layout. Our experiments with several example scenes showed that our kd‐tree representation technique significantly reduced the memory requirements for storing the kd‐tree structure, while effectively suppressing the unavoidable frame‐rate degradation observed during ray tracing.  相似文献   

3.
The selection of an appropriate global transfer function is essential for visualizing time‐varying simulation data. This is especially challenging when the global data range is not known in advance, as is often the case in remote and in‐situ visualization settings. Since the data range may vary dramatically as the simulation progresses, volume rendering using local transfer functions may not be coherent for all time steps. We present an exploratory technique that enables coherent classification of time‐varying volume data. Unlike previous approaches, which require pre‐processing of all time steps, our approach lets the user explore the transfer function space without accessing the original 3D data. This is useful for interactive visualization, and absolutely essential for in‐situ visualization, where the entire simulation data range is not known in advance. Our approach generates a compact representation of each time step at rendering time in the form of ray attenuation functions, which are used for subsequent operations on the opacity and color mappings. The presented approach offers interactive exploration of time‐varying simulation data that alleviates the cost associated with reloading and caching large data sets.  相似文献   

4.
We investigate semi‐stochastic tilings based on Wang or corner tiles for the real‐time synthesis of example‐based textures. In particular, we propose two new tiling approaches: (1) to replace stochastic tilings with pseudo‐random tilings based on the Halton low‐discrepancy sequence, and (2) to allow the controllable generation of tilings based on a user‐provided probability distribution. Our first method prevents local repetition of texture content as common with stochastic approaches and yields better results with smaller sets of utilized tiles. Our second method allows to directly influence the synthesis result which—in combination with an enhanced tile construction method that merges multiple source textures—extends synthesis tasks to globally‐varying textures. We show that both methods can be implemented very efficiently in connection with tile‐based texture mapping and also present a general rule that allows to significantly reduce resulting tile sets.  相似文献   

5.
Animations of characters with flexible bodies such as jellyfish, snails, and, hearts are difficult to design using traditional skeleton‐based approaches. A standard approach is keyframing, but adjusting the shape of the flexible body for each key frame is tedious. In addition, the character cannot dynamically adjust its motion to respond to the environment or user input. This paper introduces a new procedural deformation framework (ProcDef) for designing and driving animations of such flexible objects. Our approach is to synthesize global motions procedurally by integrating local deformations. ProcDef provides an efficient design scheme for local deformation patterns; the user can control the orientation and magnitude of local deformations as well as the propagation of deformation signals by specifying line charts and volumetric fields. We also present a fast and robust deformation algorithm based on shape‐matching dynamics and show some example animations to illustrate the feasibility of our framework.  相似文献   

6.
The human shoulder complex is perhaps the most complicated joint in the human body being comprised of a set of three bones, muscles, tendons, and ligaments. Despite this anatomical complexity, computer graphics models for motion capture most often represent this joint as a simple ball and socket. In this paper, we present a method to determine a shoulder skeletal model that, when combined with standard skinning algorithms, generates a more visually pleasing animation that is a closer approximation to the actual skin deformations of the human body. We use a data‐driven approach and collect ground truth skin deformation data with an optical motion capture system with a large number of markers (200 markers on the shoulder complex alone). We cluster these markers during movement sequences and discover that adding one extra joint around the shoulder improves the resulting animation qualitatively and quantitatively yielding a marker set of approximately 70 markers for the complete skeleton. We demonstrate the effectiveness of our skeletal model by comparing it with ground truth data as well as with recorded video. We show its practicality by integrating it with the conventional rendering/animation pipeline.  相似文献   

7.
Controlling a crowd using multi‐touch devices appeals to the computer games and animation industries, as such devices provide a high‐dimensional control signal that can effectively define the crowd formation and movement. However, existing works relying on pre‐defined control schemes require the users to learn a scheme that may not be intuitive. We propose a data‐driven gesture‐based crowd control system, in which the control scheme is learned from example gestures provided by different users. In particular, we build a database with pairwise samples of gestures and crowd motions. To effectively generalize the gesture style of different users, such as the use of different numbers of fingers, we propose a set of gesture features for representing a set of hand gesture trajectories. Similarly, to represent crowd motion trajectories of different numbers of characters over time, we propose a set of crowd motion features that are extracted from a Gaussian mixture model. Given a run‐time gesture, our system extracts the K nearest gestures from the database and interpolates the corresponding crowd motions in order to generate the run‐time control. Our system is accurate and efficient, making it suitable for real‐time applications such as real‐time strategy games and interactive animation controls.  相似文献   

8.
Recent advances in physically‐based simulations have made it possible to generate realistic animations. However, in the case of solid‐fluid coupling, wetting effects have rarely been noticed despite their visual importance especially in interactions between fluids and granular materials. This paper presents a simple particle‐based method to model the physical mechanism of wetness propagating through granular materials; Fluid particles are absorbed in the spaces between the granular particles and these wetted granular particles then stick together due to liquid bridges that are caused by surface tension and which will subsequently disappear when over‐wetting occurs. Our method can handle these phenomena by introducing a wetness value for each granular particle and by integrating those aspects of behavior that are dependent on wetness into the simulation framework. Using this method, a GPU‐based simulator can achieve highly dynamic animations that include wetting effects in real time.  相似文献   

9.
In this paper, we exploit the use of peridynamics theory for graphical animation of material deformation and fracture. We present a new meshless framework for elastoplastic constitutive modelling that contrasts with previous approaches in graphics. Our peridynamics‐based elastoplasticity model represents deformation behaviours of materials with high realism. We validate the model by varying the material properties and performing comparisons with finite element method (FEM) simulations. The integral‐based nature of peridynamics makes it trivial to model material discontinuities, which outweighs differential‐based methods in both accuracy and ease of implementation. We propose a simple strategy to model fracture in the setting of peridynamics discretization. We demonstrate that the fracture criterion combined with our elastoplasticity model could realistically produce ductile fracture as well as brittle fracture. Our work is the first application of peridynamics in graphics that could create a wide range of material phenomena including elasticity, plasticity, and fracture. The complete framework provides an attractive alternative to existing methods for producing modern visual effects.  相似文献   

10.
Large datasets of 3D objects require an intuitive way to browse and quickly explore shapes from the collection. We present a dynamic map of shapes where similar shapes are placed next to each other. Similarity between 3D models exists in a high dimensional space which cannot be accurately expressed in a two dimensional map. We solve this discrepancy by providing a local map with pan capabilities and a user interface that resembles an online experience of navigating through geographical maps. As the user navigates through the map, new shapes appear which correspond to the specific navigation tendencies and interests of the user, while maintaining a continuous browsing experience. In contrast with state of the art methods which typically reduce the search space by selecting constraints or employing relevance feedback, our method enables exploration of large sets without constraining the search space, allowing the user greater creativity and serendipity. A user study evaluation showed a strong preference of users for our method over a standard relevance feedback method.  相似文献   

11.
Scientific data acquired through sensors which monitor natural phenomena, as well as simulation data that imitate time‐identified events, have fueled the need for interactive techniques to successfully analyze and understand trends and patterns across space and time. We present a novel interactive visualization technique that fuses ground truth measurements with simulation results in real‐time to support the continuous tracking and analysis of spatiotemporal patterns. We start by constructing a reference model which densely represents the expected temporal behavior, and then use GPU parallelism to advect measurements on the model and track their location at any given point in time. Our results show that users can interactively fill the spatio‐temporal gaps in real world observations, and generate animations that accurately describe physical phenomena.  相似文献   

12.
We present novel visual and interactive techniques for exploratory visualization of animal kinematics using instantaneous helical axes (IHAs). The helical axis has been used in orthopedics, biomechanics, and structural mechanics as a construct for describing rigid body motion. Within biomechanics, recent imaging advances have made possible accurate high‐speed measurements of individual bone positions and orientations during experiments. From this high‐speed data, instantaneous helical axes of motion may be calculated. We address questions of effective interactive, exploratory visualization of this high‐speed 3D motion data. A 3D glyph that encodes all parameters of the IHA in visual form is presented. Interactive controls are used to examine the change in the IHA over time and relate the IHA to anatomical features of interest selected by a user. The techniques developed are applied to a stereoscopic, interactive visualization of the mechanics of pig mastication and assessed by a team of evolutionary biologists who found interactive IHA‐based analysis a useful addition to more traditional motion analysis techniques.  相似文献   

13.
The visual simulation of natural phenomena has been widely studied. Although several methods have been proposed to simulate melting, the flows of meltwater drops on the surfaces of objects are not taken into account. In this paper, we propose a particle‐based method for the simulation of the melting and freezing of ice objects and the interactions between ice and fluids. To simulate the flow of meltwater on ice and the formation of water droplets, a simple interfacial tension is proposed, which can be easily incorporated into common particle‐based simulation methods such as Smoothed Particle Hydrodynamics. The computations of heat transfer, the phase transition between ice and water, the interactions between ice and fluids, and the separation of ice due to melting are further accelerated by implementing our method using CUDA. We demonstrate our simulation and rendering method for depicting melting ice at interactive frame‐rates.  相似文献   

14.
This paper presents an efficient technique for synthesizing motions by stitching, or splicing, an upper‐body motion retrieved from a motion space on top of an existing lower‐body locomotion of another motion. Compared to the standard motion splicing problem, motion space splicing imposes new challenges as both the upper and lower body motions might not be known in advance. Our technique is the first motion (space) splicing technique that propagates temporal and spatial properties of the lower‐body locomotion to the newly generated upper‐body motion and vice versa. Whereas existing techniques only adapt the upper‐body motion to fit the lower‐body motion, our technique also adapts the lower‐body locomotion based on the upper body task for a more coherent full‐body motion. In this paper, we will show that our decoupled approach is able to generate high‐fidelity full‐body motion for interactive applications such as games.  相似文献   

15.
Existing synthesis methods for closely interacting virtual characters relied on user‐specified constraints such as the reaching positions and the distance between body parts. In this paper, we present a novel method for synthesizing new interacting motion by composing two existing interacting motion samples without the need to specify the constraints manually. Our method automatically detects the type of interactions contained in the inputs and determines a suitable timing for the interaction composition by analyzing the spacetime relationships of the input characters. To preserve the features of the inputs in the synthesized interaction, the two inputs will be aligned and normalized according to the relative distance and orientation of the characters from the inputs. With a linear optimization method, the output is the optimal solution to preserve the close interaction of two characters and the local details of individual character behavior. The output animations demonstrated that our method is able to create interactions of new styles that combine the characteristics of the original inputs.  相似文献   

16.
In this paper we present several techniques to interactively explore representations of 2D vector fields. Through a set of simple hand postures used on large, touch‐sensitive displays, our approach allows individuals to custom‐design glyphs (arrows, lines, etc.) that best reveal patterns of the underlying dataset. Interactive exploration of vector fields is facilitated through freedom of glyph placement, glyph density control, and animation. The custom glyphs can be applied individually to probe specific areas of the data but can also be applied in groups to explore larger regions of a vector field. Re‐positionable sources from which glyphs—animated according to the local vector field—continue to emerge are used to examine the vector field dynamically. The combination of these techniques results in an engaging visualization with which the user can rapidly explore and analyze varying types of 2D vector fields, using a virtually infinite number of custom‐designed glyphs.  相似文献   

17.
We present a new technique which can handle both point and sliding constraints in the multigrid (MG) framework. Although the MG method can theoretically perform as fast as O(N), the development of a clothing simulator based on the MG method calls for solving an important technical challenge: handling the constraints. Resolving constrains has been difficult in MG because there has been no clear way to transfer the constraints existing in the finest level mesh to the coarser level meshes. This paper presents a new formulation based on soft constraints, which can coarsen the constraints defined in the finest level to the coarser levels. Experiments are performed which show that the proposed method can solve the linear system up to 4–9 times faster in comparison with the modified preconditioned conjugate gradient method (MPCG) without quality degradation. The proposed method is easy to implement and can be straightforwardly applied to existing clothing simulators which are based on implicit time integration.  相似文献   

18.
Signed distance functions (SDF) to explicit or implicit surface representations are intensively used in various computer graphics and visualization algorithms. Among others, they are applied to optimize collision detection, are used to reconstruct data fields or surfaces, and, in particular, are an obligatory ingredient for most level set methods. Level set methods are common in scientific visualization to extract surfaces from scalar or vector fields. Usual approaches for the construction of an SDF to a surface are either based on iterative solutions of a special partial differential equation or on marching algorithms involving a polygonization of the surface. We propose a novel method for a non‐iterative approximation of an SDF and its derivatives in a vicinity of a manifold. We use a second‐order algebraic fitting scheme to ensure high accuracy of the approximation. The manifold is defined (explicitly or implicitly) as an isosurface of a given volumetric scalar field. The field may be given at a set of irregular and unstructured samples. Stability and reliability of the SDF generation is achieved by a proper scaling of weights for the Moving Least Squares approximation, accurate choice of neighbors, and appropriate handling of degenerate cases. We obtain the solution in an explicit form, such that no iterative solving is necessary, which makes our approach fast.  相似文献   

19.
There is considerable recent progress in hair simulations, driven by the high demands in computer animated movies. However, capturing the complex interactions between hair and water is still relatively in its infancy. Such interactions are best modeled as those between water and an anisotropic permeable medium as water can flow into and out of the hair volume biased in hair fiber direction. Modeling the interaction is further challenged when the hair is allowed to move. In this paper, we introduce a simulation model that reproduces interactions between water and hair as a dynamic anisotropic permeable material. We utilize an Eulerian approach for capturing the microscopic porosity of hair and handle the wetting effects using a Cartesian bounding grid. A Lagrangian approach is used to simulate every single hair strand including interactions with each other, yielding fine‐detailed dynamic hair simulation. Our model and simulation generate many interesting effects of interactions between fine‐detailed dynamic hair and water, i.e., water absorption and diffusion, cohesion of wet hair strands, water flow within the hair volume, water dripping from the wet hair strands and morphological shape transformations of wet hair.  相似文献   

20.
This paper presents a hybrid approach to multiple fluid simulation that can handle miscible and immiscible fluids, simultaneously. We combine distance functions and volume fractions to capture not only the discontinuous interface between immiscible fluids but also the smooth transition between miscible fluids. Our approach consists of four steps: velocity field computation, volume fraction advection, miscible fluid diffusion, and visualization. By providing a combining scheme between volume fractions and level set functions, we are able to take advantages of both representation schemes of fluids. From the system point of view, our work is the first approach to Eulerian grid‐based multiple fluid simulation including both miscible and immiscible fluids. From the technical point of view, our approach addresses the issues arising from variable density and viscosity together with material diffusion. We show that the effectiveness of our approach to handle multiple miscible and immiscible fluids through experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号