首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Currently, the food industry wants to expand the range of probiotic yogurts but each probiotic bacteria offers different and specific health benefits. Little information exists on the influence of probiotic strains on physicochemical properties and sensory characteristics of yogurts and fermented milks. Six probiotic yogurts or fermented milks and 1 control yogurt were prepared, and we evaluated several physicochemical properties (pH, titratable acidity, texture, color, and syneresis), microbial viability of starter cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and probiotics (Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus reuteri) during fermentation and storage (35 d at 5°C), as well as sensory preference among them. Decreases in pH (0.17 to 0.50 units) and increases in titratable acidity (0.09 to 0.29%) were observed during storage. Only the yogurt with S. thermophilus, L. delbrueckii ssp. bulgaricus, and L. reuteri differed in firmness. No differences in adhesiveness were determined among the tested yogurts, fermented milks, and the control. Syneresis was in the range of 45 to 58%. No changes in color during storage were observed and no color differences were detected among the evaluated fermented milk products. Counts of S. thermophilus decreased from 1.8 to 3.5 log during storage. Counts of L. delbrueckii ssp. bulgaricus also decreased in probiotic yogurts and varied from 30 to 50% of initial population. Probiotic bacteria also lost viability throughout storage, although the 3 probiotic fermented milks maintained counts ≥107 cfu/mL for 3 wk. Probiotic bacteria had variable viability in yogurts, maintaining counts of L. acidophilus ≥107 cfu/mL for 35 d, of L. casei for 7 d, and of L. reuteri for 14 d. We found no significant sensory preference among the 6 probiotic yogurts and fermented milks or the control. However, the yogurt and fermented milk made with L. casei were better accepted. This study presents relevant information on physicochemical, sensory, and microbial properties of probiotic yogurts and fermented milks, which could guide the dairy industry in developing new probiotic products.  相似文献   

2.
Gruels tailored to school-age children and made of soy milk and rice flour with or without total dietary fiber from passion fruit by-product were fermented by amylolytic lactic acid bacteria strains (Lactobacillus fermentum Ogi E1 and Lactobacillus plantarum A6), by commercial probiotic bacteria strains (Lactobacillus acidophilus L10, Lactobacillus casei L26 and Bifidobacterium animalis subsp. lactis B94) and by co-cultures made of one amylolytic and one probiotic strain. The influence of ingredient composition and bacterial cultures on kinetics of acidification, α-amylase activity of the bacteria, apparent viscosity and microstructure of the fermented products was investigated. During fermentation of the gruels, α-amylase activity was determined through the Ceralpha method and apparent viscosity, flux behavior and thixotropy were determined in a rotational viscometer. Rheological data were fitted to Power Law model. The combination of amylolytic and probiotic bacteria strains reduced the fermentation time of the gruels as well as increased the α-amylase activity. The addition of passion fruit fiber exerted less influence on the apparent viscosity of the fermented products than the composition of the bacterial cultures. Scanning electron microscopy provided evidence of exopolysaccharide production by amylolytic bacteria strains in the food matrices tested. The co-cultures made of amylolytic and probiotic bacteria strains are suitable to reduce the fermentation time of a soy milk/rice matrix and to obtain a final product with pH and viscosity similar to yoghurt.  相似文献   

3.
To study the potential probiotic characteristics such as decrease of pH, microbial viability, and tolerance to simulated digestive steps of fermented soy beverage (“soy yogurt”) produced with lactobacilli isolated from cocoa fermentation (Lactobacillus fermentum TcUESC01 and Lactobacillus plantarum TcUESC02) during fermentation and refrigerated storage. The sensory acceptance of the yogurts was also tested. Samples of soy yogurt produced with L. fermentum TcUESC01 or L. plantarum TcUESC02 were collected during fermentation (0, 4, 8, and 12 h) and refrigerated storage (1, 9, 18, and 27 d), and submitted to pH and bacterial viability determinations. Tolerance to simulated digestion steps was done with refrigerated storage samples at 9 °C. Simulated digestion was performed in 3 successive steps: exposure to pepsin‐HCl solution, bile shock, and simulated small intestinal juice. During storage, a decrease in pH and lactobacillus viability was observed. L. fermentum TcUESC01 showed to be more resistant than L. plantarum TcUESC02 to simulated gastrointestinal digestion. All soy yogurts showed acceptable hedonic scores (greater than 5 in a 9‐point hedonic scale ranging from “like extremely” to “dislike extremely”) in sensory evaluation for flavor, aroma, color, consistency, and overall impression. L. plantarum TcUESC02 and, especially, L. fermentum TcUESC01 showed potential probiotic characteristics when considering pH, cell viability, and tolerance to simulated digestive steps and did not affect the sensory characteristics when supplemented to soy yogurt during storage.  相似文献   

4.
Lactobacillus strains were isolated from kimchi and investigated for their potential use for probiotic yogurt starters. Two of the isolated strains have over 90% survival rate to artificial gastric acid (pH 2.5, 1% pepsin) and artificial bile acid (0.3% oxgall). These strains were identified as Lactobacillus plantarum by 16S rRNA sequencing, and named as L. plantarum SY11 and L. plantarum SY12. The known carcinogenic enzyme, β-glucuronidase was not produced by L. plantarum SY11 and L. plantarum SY12. These 2 strains were found to be resistant to several antibiotics and strongly adhered to intestinal cells. Antiallergic effect of L. plantarum SY11 and L. plantarum SY12 was demonstrated using nitric oxide (NO) and cytokine production. L. plantarum SY11 and L. plantarum SY12 were capable of significantly decreasing NO production, and reduced T helper 2-associated cytokines, cyclooxygenase-2, tumor necrosis factor-α, and inducible nitric oxide synthase compared to control. Yogurt samples produced using L. plantarum SY11 and L. plantarum SY12 did not show significant differences in microbiological, physicochemical, and sensory properties compared with yogurt sample produced using commercial strain. Therefore, these two strains could be used as probiotic yogurt starters with antiallergic effects.  相似文献   

5.
The antiviral activity of the cell-free supernatants (CFS) containing the metabolites of five yogurts fermented under anaerobic conditions with Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum, respectively, was initially evaluated against seven RNA viruses using virus-induced cytopathic effects reduction method, while comparing that of De Man, Rogosa, and Sharpe (MRS) broths containing metabolites fermented with the same bacteria. All the CFS of yogurt showed high antiviral activity against seven RNA viruses, while the CFS of MRS broth exhibited similar or lower antiviral activity. Each CFS of yogurt and MRS broth showed no cytotoxicity with normal morphology in Vero or MDCK cells. Furthermore, CFS of each yogurt was more effective than that of MRS broth against the three enteroviruses and CFS of yogurt containing metabolites fermented with L. plantarum exhibited strong anti-influenza virus activity among that of the other yogurt and MRS broth. Therefore, CFS of the yogurt containing metabolites fermented with probiotic bacteria showed high potential to be used for developing fermented milk-based foods or drugs.  相似文献   

6.
7.
Non‐O157 Shiga toxin‐producing Escherichia coli (STEC) are a frequent cause of STEC‐related infections such as diarrhoea. Fermentation by presumptive probiotic Lactobacillus plantarum strain B411 isolated from cereal fermentation was investigated to prevent the growth of acid‐adapted (AA) and non‐acid‐adapted (NAA) non‐O157 STEC in traditionally fermented maize gruel, a widely used complementary food in Africa. L. plantarum strain B411 possessed probiotic characteristics and antimicrobial activity against selected pathogenic bacteria. Growth of AA and NAA non‐O157 STEC strains was substantially inhibited by 3.6 and 4.8 log reductions, respectively, in the maize gruel fermented with the L. plantarum B411, while their growth was only inhibited by 1.0 and 1.2 log reductions, respectively, by traditional fermentation alone. Inclusion of fermentative strains of L. plantarum exhibiting probiotic activity is a feasible method to ensure safety of traditionally fermented African cereal porridges through inhibition of non‐O157 STEC.  相似文献   

8.
Preparation of yoghurt-like product from non-dairy raw material, such as soy with probiotic and prebiotic is a novel development in the field of fermented functional foods. This research work aimed at finding the new combinations of probiotics Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, which can give good product characteristics to fermented soy milk. Fructooligosaccharide was added in an attempt to reduce the after-taste of soymilk, improve acidification rates and growth of probiotics. Acidification rate was enhanced with L. acidophilusL. plantarum and L. acidophilusL. plantarumL. rhamnosus, resulting in a shorter time to reach pH 4.5. Hardness was significantly (P?<?0.05) higher for soy yoghurt fermented by binary co-culture followed by mixed cultures. All the samples showed higher G′ (1,279.70–1405 Pa) and lower tan δ (0.273–0.346) values which signifies firmer and solid-like character of the gel formed by probiotic bacteria. Soy yoghurt made with L. acidophilusL. plantarum resulted in improved product characteristics with shorter t pH 4.5 (4.28 h). Soy yoghurt fermented with L. acidophilusL. plantarum showed more than 9 log cfu/ml count which is required for probiotic functional food.  相似文献   

9.
This study aimed to evaluate the influence of 9 Lactobacillusplantarum with broad-spectrum antibacterial activity on fermented milk, including changes to the fermentation characteristics (pH, titration acidity, and viable counts), texture profile, relative content of volatile compounds, and sensory evaluation during 28-d storage at 4°C. First, L. plantarum IMAU80106, IMAU10216, and IMAU70095 were selected as candidates for further study because of their excellent coagulation and proteolytic activities. Subsequently, these L. plantarum strainswere supplemented to fermented milk produced by commercial yogurt starters (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus) and a panel of parameters reflecting product quality was subsequently monitored during 28 d of postfermentation storage. The pH value and titration acidity of the fermented milk mildly fluctuated, whereas the L. plantarum viable counts remained stable along the storage period. Fourteen key volatile compounds were detected in the fermented milk by gas chromatography-mass spectrometry, and some flavor compounds were uniquely present in the L. plantarum-supplemented fermented milk (including 2,3-pentanedione, acetaldehyde, and acetate). No significant difference was shown in the sensory evaluation scores between samples with or without L. plantarum supplementation, but a gradual decrease was observed over storage in all samples. However, when L. plantarum was added, apparent shifts were observed in the overall quality of the fermented milk based on principal component analysis and multivariate ANOVA, particularly in the texture (adhesiveness) and volatile flavor compound profiles (acetaldehyde). Compared with L. plantarum IMAU80106 and IMAU10216, both the texture and volatile flavor profiles of IMAU70095 were closest to those of the control without adding the adjunct bacteria, suggesting that IMAU70095 might be the most suitable strain for further application in functional dairy product development. The current work has explored the potential of applying L. plantarum in fermented milk by performing thorough physical and chemical characterization. Our work is of intense interest to the dairy industry.  相似文献   

10.
《Journal of dairy science》2019,102(12):10724-10736
This study was aimed at developing a new functional fermented beverage manufactured with semi-skimmed sheep milk and strawberry pulp (Fragaria × ananassa Duch.) and commercial prebiotic ingredients. We also compared the performance of the yogurt starter cultures and a Lactobacillus plantarum strain (CECT_8328) with potential probiotic properties. We assessed the nutritional profile, bioactivity compounds, viability of lactic acid bacteria during storage, and survival of L. plantarum after in vitro simulated digestion during the storage period. The lactic acid bacteria were viable throughout the storage period, but only L. plantarum maintained good viability after simulated digestion. Nevertheless, neither inulin nor potato starch increased bacterial viability. The fermented semi-skimmed sheep milk strawberry beverages we developed are good sources of minerals and proteins.  相似文献   

11.
K. Kailasapathy 《LWT》2006,39(10):1221-1227
The survival and effect of free and calcium-induced alginate-starch encapsulated probiotic bacteria (Lactobacillus acidophilus and Bifidobacterium lactis) on pH, exopolysaccharide production and influence on the sensory attributes of yogurt were studied over 7 weeks storage. Addition of probiotic bacteria (free or encapsulated) reduced acid development in yogurt during storage. Post-acidification in yogurt with encapsulated probiotic bacteria was slower compared to yogurt with free probiotic bacteria. More exopolysaccharides were observed in yogurts with probiotic cultures compared to those without probiotic cultures. The results showed that there was an increased survival of 2 and 1 log cell numbers of L. acidophilus and B. lactis, respectively due to protection of cells by microencapsulation. The addition of probiotic cultures either in the free or encapsulated states did not significantly affect appearance and colour, acidity, flavour and after taste of the yogurts over the storage period. There were, however, significant differences (P<0.05) in the texture (smoothness) of the yogurts. This study has shown that incorporation of free and encapsulated probiotic bacteria do not substantially alter the overall sensory characteristics of yogurts and microencapsulation helps to enhance the survival of probiotic bacteria in yogurts during storage.  相似文献   

12.
In the present work, single and mixed cereal substrates were fermented with lactic acid bacteria to study and compare the effect of the media formulation on fermentation parameters. Three cereal flours namely malt, barley and barley mixed with malt (barley–malt) were selected and fermented with two probiotic strains: Lactobacillus plantarum (NCIMB 8826) and Lactobacillus acidophilus (NCIMB 8821). The effect of the single and mixed cereal flour suspensions on the fermentation of these two strains of lactic acid bacteria (LAB) was studied at an incubation temperature of 30 °C for 28 h. It was found that the LAB growth was enhanced in media containing malt and significant amounts of lactic acid were produced (0.5–3.5 g/L). A cell concentration between 7.9 and 8.5 Log10 CFU/mL and a pH below 4.0 was achieved within 6 h of fermentation. Though the cell populations in the mixed culture fermentations of mixed substrates were similar to the ones obtained with single cereal flours, significant differences in the production of lactic acid were observed. These results suggest that the functional and organoleptic properties of these cereal-based probiotic drinks could be considerably modified through changes in the substrate or inocula composition.  相似文献   

13.
Both Lactobacillus reuteri RC-14 and Lactobacillus rhamnosus GR-1 are considered probiotic agents with therapeutic properties. To prepare mother cultures for these organism bacteria, four formulations were made with milk (1% fat) with 0.33% yeast extract (T1); 0.4% inulin (T2); 0.33% yeast extract and 0.4% inulin (T3); and one with no additives (T4). The media were inoculated with 1% probiotic cultures and incubated anaerobically at 37 °C overnight. Low-fat (1%) probiotic yogurts were made. Survival of L. reuteri RC-14 and L. rhamnosus GR-1 was monitored after 1, 7, 14, 21, and 28 days of storage at 4 °C. In all treatments, L. rhamnosus GR-1 survived significantly better (P < 0.05) than L. reuteri RC-14. Survival was highest in media T1 and T3. This study shows that yogurt has the potential to deliver probiotic bacteria to consumers, with L. rhamnosus GR-1 providing excellent shelf life.Industrial relevanceThis study is of relevance to food industry because it deals with the effectiveness of dairy products as a good-vehicle for delivering probiotic microorganisms to consumers. The fermentation of milk into yogurt has gained widespread consumer acceptance in North America and its consumption has increased significantly over the past few years. The normal yogurt cultures, Lactobacillus delbreukii sub-species bulgaricus and Streptococcus thermophilus, are not bile resistant or acid tolerant and thus cannot survive in the intestinal tract, although they may help to lessen the symptoms of lactose intolerance. Various strains of lactic acid bacteria are considered probiotics. Two of the most documented probiotic strains, Lactobacillus reuteri (formerly fermentum) RC-14 and Lactobacillus rhamnosus GR-1 can colonize the intestine and vagina and reduce recurrences of bacterial vaginosis, yeast vaginitis and urinary tract infections. They are bile resistant and survive passage through the human gastrointestinal tract without induction of systemic immune or inflammatory responses. There is no published information on the growth and survival of L. rhamnosus GR-1 and L. reuteri RC-14 in yogurt. The incorporation of L. rhamnosus GR-1 and L. reuteri RC-14 in yogurt is an innovative idea. This research developed a new probiotic yogurt with sufficient viable counts of L. rhamnosus GR-1 accompanied by L. reuteri RC-14. The use of probiotic bacteria, especially those with proven therapeutic effects, in dairy products has attracted a lot of attention from dairy industry and health/wellness industry, and this type of product can provide a bridge between the two industries.  相似文献   

14.
《LWT》2005,38(1):73-75
Red beets were evaluated as a potential substrate for the production of probiotic beet juice by four species of lactic acid bacteria (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus plantarum). All the lactic cultures were found capable of rapidly utilizing beet juice for cell synthesis and lactic acid production. However, L. acidophilus and L. plantarum produced a greater amount of lactic acid than other cultures and reduced the pH of fermented beet juice from an initial value of 6.3 to below 4.5 after 48 h of fermentation at 30°C. Although the lactic cultures in fermented beet juice gradually lost their viability during cold storage, the viable cell counts of these lactic acid bacteria except for L. acidophilus in the fermented beet juice still remained at 106–108 CFU/ml after 4 weeks of cold storage at 4°C.  相似文献   

15.
Lactobacillus helveticus H9 is a probiotic bacterium originating from traditional Tibetan kurut. It has high angiotensin-converting enzyme-inhibitory (ACEI) and antihypertensive activities. We aimed to evaluate the effects of L. helveticus H9 supplementation in yogurt fermentation and storage. We monitored changes of multiple parameters over 28 d of storage at 4°C; namely, pH, titratable acidity, free amino groups, ACEI activity, physical properties, volatile flavor compounds, and sensory quality. Supplementation of L. helveticus H9 enhanced fermented milk acidification and proteolysis, resulting in a shorter fermentation time. The H9 treatment significantly increased the ACEI activity of the fermented milks. Fifteen key volatile flavors were detected by solid-phase microextraction-gas chromatography-mass spectrometry across all samples. More alcohols, aldehydes, and nitrogenous compounds, especially acetoin and benzaldehyde, were detected in the H9-supplemented fermented milks. The human sensory scores for flavor and texture, but not appearance, were lower for the H9-supplemented fermented milks, particularly beyond 2 wk of cold storage. Our results will be of interest to the dairy industry for developing novel functional dairy products.  相似文献   

16.
This study was conducted to evaluate probiotic potato juice as a potential substrate for the production of Lactobacillus casei, and the change in the functionality of potato juice was monitored during fermentation. L. casei grew well in potato juice without nutrient supplementation, and lactic acid bacteria of fermented ‘Haryoung’ juice reached 1.7×109 CFU/mL after a 48 h fermentation. DPPH radical scavenging activities of the potato juices decreased after a 72 h fermentation, but fermented colored potato juice still maintained >50% radical scavenging activity. The survival rate of L. casei fermented in’ Haryoung’ juice was 89.0% after exposure to an acidic condition, and L. casei in all fermented potato juice samples showed the ability (50–85%) to survive in the presence of bile. These results suggest that fermented potato juice might serve as a probiotic functional beverage for vegetarians or consumers who are allergic to dairy products.  相似文献   

17.
Cholesterol-lowering activity is one of the most promising properties of lactic acid bacteria with probiotic characteristics. In the present study, 58 potentially probiotic lactic acid bacteria were tested for their ability to survive in vitro digestion and reduce cholesterol in a medium containing cholesterol and bile acids. The best-performing strains (Lactobacillus casei VC199, Lactobacillus paracasei ssp. paracasei SE160 and VC213, Lactobacillus plantarum VS166 and VS513, Enterococcus faecium VC223, and Enterococcus lactis BT161) resulted in a 42 to 55% reduction of the cholesterol level in broth and were further tested in cheese manufacture. The cholesterol content in all the cheeses decreased with ripening. All the strains were present in the cheese at levels higher than 107 cfu/g until 60 d of ripening, the highest reductions (up to 23%) being obtained when Lb. paracasei ssp. paracasei VC213 and E. lactis BT161 were added during the cheese-making. The adjunct cultures had no negative effect on the sensory characteristics of the cheese. Thus, these strains with proven in vitro properties are good candidates for novel probiotic-containing formulations and could be used to functionalize foods such as dairy fermented products.  相似文献   

18.
Growth of Lactobacillus plantarum 70810, Lactobacillus rhamnosus 6005 and a commercial yogurt starter culture in soymilk was investigated in the present study. It was found that the fermented soymilk using L. plantarum 70810 had significantly higher viable cell counts, water holding capacity (WHC, 88.27%), apparent viscosity (1840.35 mPa s) and exopolysaccharide (EPS) amount (832.15 mg/L) than the other two starter cultures in soymilk. Direct observation of microstructure in fermented soymilk indicated that the network structures of EPS-protein could improve the texture of fermented soymilk. Considering that the beneficial effects of L. plantarum 70810 in fermented soymilk, volatile compounds in fermented soymilk were further identified. Then the growth and fermentation characteristics of L. plantarum 70810 including changes in viable cell counts, pH, titratable acidity, apparent viscosity and EPS production during storage were investigated. In comparison to original soymilk base, the concentrations of the characteristic flavor compounds for fermented soymilk using L. plantarum 70810 increased, whereas hexanal, 2-pentylfuran and 2-pentanone in relation to beany flavor of soymilk decreased. In addition, fermented soymilk using L. plantarum 70810 maintained high viable cell count (>108 cfu/mL), apparent viscosity (966.43 mPa s) and amounts of EPS (635.49 mg/mL) during storage at 4 °C for 21 days.  相似文献   

19.
菠萝果汁分别接种干酪乳杆菌、植物乳杆菌、嗜酸乳杆菌和肠膜明串珠菌进行发酵,研究菠萝果汁发酵过程中理化品质和感官品质的变化规律。结果表明,4种乳酸菌在菠萝果汁中生长良好,发酵24 h,植物乳杆菌和肠膜明串珠菌的活菌数对数值均已超过8.3;经乳酸菌发酵后,菠萝果汁的pH、维生素C(VC)含量均显著降低,而总酸、可溶性固形物、总酚、1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除率显著升高。其中,植物乳杆菌具有较强的产酸能力,肠膜明串珠菌能够延缓VC的流失。在对感官品质影响方面,4种发酵菠萝果汁之间存在差异,经肠膜明串株菌发酵的菠萝果汁感官评价较优(79.79分),而经嗜酸乳杆菌能够更好地保留菠萝果汁特有的挥发性香气成分。研究结果为益生菌菠萝果汁产品的开发提供参考依据和技术支持。  相似文献   

20.
Yogurt is a well-known nutritious and probiotic food and is traditionally fermented from milk using the symbiotic starter culture of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. However, yogurt consumption may cause health problems in lactose-intolerant individuals, and the demand for lactose-free yogurt has been increasing. The standard method to prepare lactose-free yogurt is to hydrolyze milk by lactase; however, this process has been reported to influence the fermentation properties of starter strains. This study aimed to investigate the fermentation properties of an industrial starter culture of L. bulgaricus 2038 and S. thermophilus 1131 in lactose-hydrolyzed milk and to examine the metabolic changes induced by glucose utilization. We found that the cell number of L. bulgaricus 2038, exopolysaccharide concentration, and viscosity in the coculture of L. bulgaricus 2038 and S. thermophilus 1131 was significantly increased in lactose-hydrolyzed milk compared with that in unhydrolyzed milk. Although the cell number of S. thermophilus 1131 showed no difference, production of formic acid and reduction of dissolved oxygen were enhanced in lactose-hydrolyzed milk. Further, in lactose-hydrolyzed milk, S. thermophilus 1131 was found to have increased the expression of NADH oxidase, which is responsible for oxygen reduction. These results indicated that glucose utilization promoted S. thermophilus 1131 to rapidly reduce the dissolved oxygen amount and produce a high concentration of formic acid, presumably resulting in the increased cell number of L. bulgaricus 2038 in the coculture. Our study provides basic information on the metabolic changes in starter strains in lactose-hydrolyzed milk, and demonstrates that lactose-free yogurt with increased cell number of L. bulgaricus can be prepared without delay in fermentation and decrease in the cell number of S. thermophilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号