共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiao Chang Qingzhong Xue Daliang He Lei Zhu Xiaofang Li Baoshou Tao 《International Journal of Hydrogen Energy》2017,42(38):24189-24196
As sustainable and clean energy, hydrogen is the most attractive and promising energy source in the future. Membrane separation is attractive due to its high hydrogen separation performance and low energy consumption. Van-der-Waals-corrected density functional theory (DFT) calculations are performed to investigate the hydrogen separation performance of 585 divacancy-defective germanene (585 germanene). It is found that the 585 germanene presents a surmountable energy barrier (0.34 eV) for hydrogen molecule passing through the membrane, and that membrane exhibits extremely high selectivity for H2 molecules over CO, CO2, N2, CH4 and H2S molecules in a wide range of temperatures. Meanwhile, the hydrogen permeance of 585 germanene can reach 1.94 × 10?7 mol s?1 m?2 Pa?1 at the low limit temperature of methane reforming (at 450 K), which is higher than the industrially acceptable gas permeance. With high selectivity and permeance, the 585 germanene is a promising candidate for hydrogen separation. 相似文献
2.
《International Journal of Hydrogen Energy》2019,44(44):24267-24276
In this paper, a 3D nanoporous carbon molecular sieve (CMS) membrane is proposed to investigate the diffusion and separation properties of ethylene/methane and ethylene/acetylene binary mixtures permeating through the structural deformated carbon nanotube (CNT) channels. Combining the results obtained from density functional theory (DFT) calculations and molecular dynamics (MD) simulations, we find that the organic gas permeability and selectivity can be effectively ameliorated by fine-tuning the geometric structure of CNTs gas separation channels. By virtue of the intrinsic structural characteristics, this hybrid CMS configuration established elliptical cylinder channels to separate the organic gas molecules with similar molecular size. Compared with channels with a circular cross section, the gas selectivity for channels with an elliptical cross section is larger, and it increases with an increasing pressure. The selectivity of ethylene over acetylene (methane) increased to ~13.8 (5.5) in deformed CNTs channels, which is more than doubled over the original CNT channels. This distinguished hybridization configuration may pave a promising avenue to utilize gas separation materials. 相似文献
3.
《International Journal of Hydrogen Energy》2021,46(80):40294-40300
This paper aimed to study the effects of fullerene (C60) impregnation on the isoreticular metal-organic framework (IRMOF) materials MOF-650 (ZnO4 nodes were connected to azulenedicarboxylate linkers), MOF-5(ZnO4 nodes were connected to benzenedicarboxylate linkers), and IRMOF-10 (ZnO4 nodes were connected to biphenyldicarboxylate linkers) for H2 storage, these IRMOFs had similar structures but different pore volumes and organic linkers. Density functional theory (DFT) and grand canonical monte Carlo (GCMC) calculations indicated that C60 plays an important role in balancing the gravimetric and volumetric H2 densities of the IRMOFs. The C60@IRMOFs revealed improved volumetric density when H2 was undersaturated but reduced gravimetric density under H2 saturation. The saturated gravimetric H2 density of the IRMOFs was decided by the free volume. At 77 K, C60@MOF-650 had a gravimetric H2 density of 5.3 wt% and volumetric H2 density of 42 g/L under 10 bar, and C60@IRMOF-10 had a gravimetric H2 density of 7.4 wt% and volumetric H2 density of 43 g/L under 18 bar. These values nearly meet the United States Department of Energy (DOE) gravimetric and volumetric H2 density ultimate targets (gravimetric H2 density, 6.5 wt%; volumetric H2 density, 50 g/L) under ambient pressures. Among the studied IRMOFs, C60@MOF-650 and C60@IRMOF-10 demonstrated the best H2 storage properties at 233 and 298 K. 相似文献
4.
《International Journal of Hydrogen Energy》2023,48(64):24826-24832
Two-dimensional molybdenum carbide (2D-Mo2C) is thought to be promising for catalytic hydrogenation of CO2 to CH4, but little is known about its catalytic reaction mechanism. In this work, we investigate the hydrogenation of CO2 to CH4 on 2D-Mo2C using density functional theory. Our calculations show that Mo on the surface can efficiently decompose CO2 to CO and O, and also H2 to H. The hydrogenation of CO produces CHO that is readily deoxygenated to CH, and CH is selectively hydrogenated to produce CH4. Interestingly, the embedded Ir1 on 2D-Mo2C can act as a single-atom promoter to improve the performance of CO2 methanation, while on the other hand maintaining its high selectivity for CH4. This work provides insight into the mechanism of 2D-Mo2C-catalyzed CO2 methanation reactions and suggests a strategy to improve the performance of such catalysts through single-atom promoters. 相似文献
5.
《International Journal of Hydrogen Energy》2020,45(41):21600-21610
DFT calculations were carried out to investigate hydrogen release and diffusion behaviors. Results demonstrated that MgH2/TiH2 interface is thermodynamically stable with negative adhesion energy of −1.33 J/m2 with respect to the individual MgH2 and TiH2 slabs. The formation of MgH2/TiH2 interface alters the interstice structure and space of the interstitial sites where H atoms located and then significantly lowers the dehydrogenation energy of hydrogen releasing from both the MgH2 and TiH2 slabs nearby the interface comparing the bulk MgH2 and TiH2. The smallest dehydrogenation energy of 0.06 eV/H could be reached when H releases from MgH2 side. The study also illustrates that the existence of the MgH2/TiH2 interface promotes the diffusion of hydrogen vacancy. The lowest diffusion barrier of hydrogen vacancy in the MgH2 slab (from the sublayer to the frontier layer to the interface) is estimated as 0.21 eV. Based on the present study, one can deduce that the dehydrogenation of the MgH2/TiH2 system will start by H releasing from MgH2 slab, which generates H vacancies near the interface, then the interior H of MgH2 migrates to the H vacancies (diffuse of H vacancies in the opposite direction) and releases. The TiH2 acts as a catalyst promoting the generation and diffusion of H vacancies in MgH2. Therefore synthesizing of MgH2/TiH2/MgH2 sandwich structure could be an effective approach to promote the dehydrogenation process of MgH2, and an ideal structure owning geometric hydrogen capacity of 6.45 wt%. 相似文献
6.
《International Journal of Hydrogen Energy》2019,44(49):27030-27038
A series of salts of the B12H122− anion has been prepared: a solvent-free (N2H5)2B12H12, its solvates – (N2H5)2B12H12·H2O, (N2H5)2B12H12·2(CH3CN), (N2H5)2B12H12·(CH3OH), and the salt of a protonated azine – [(CH3)2CNNHC(CH3)2]2B12H12. These compounds have been synthesized from the commercially available precursors via one- or two-step procedures and fully identified on the basis of single-crystal and powder X-ray diffraction. At room temperature (N2H5)2B12H12 crystallizes in C2/c space group, with a = 18.480(5) Å, b = 6.5344(19) Å, c = 13.106(4) Å and β = 131.911(16)o, V = 1177.8(7) Å3, Z = 4. While this compound nominally contains ca. 10.7 wt% of hydrogen, it thermally decomposes above 200 °C releasing mainly N2 and NH3, with H2 being only the minor gaseous product. Contrary to the recently reported case of hydrazinates of borohydrides, doping with 5 mol% of FeCl3 does not increase the relative amount of hydrogen significantly, however, it alters the ratio of N2 and NH3. 相似文献
7.
《International Journal of Hydrogen Energy》2019,44(37):20914-20923
The main objective of this study is to determine the best intermediate layer for tubular carbon membranes for H2 and He separation. Intermediate layer was applied to strengthen interfacial adhesion between selective carbon layers and tubular support. Three different intermediate layers (alumina powder, carbon molecular sieve (CMS), and carbon pencil) had been evaluated to compare their influence towards the performance of gas separation of the carbon membrane. Tubular carbon membrane was fabricated from PI/NCC-based polymer blends which had been carbonized under Argon atmosphere at 800 °C with a heating rate of 3 °C/min. Based on the scanning electron microscopic (SEM) observations, carbon membrane with alumina powder as an intermediate layer had formed a smoother surface compared to other types of intermediate layers. A high performance of tubular carbon membrane was obtained by employing alumina powder as an intermediate layer, which exhibited the best selectivity of H2/N2 and He/N2 of 447.31 ± 1.45 and 471.72 ± 2.19, respectively. 相似文献
8.
《International Journal of Hydrogen Energy》2019,44(8):4123-4132
Ag, Pd, Au, Cu2O as cocatalysts were loaded on the layered H2SrTa2O7 (HST) for photocatalytic CO2 reduction with H2O. The characterization revealed that cocatalysts loaded on the surface of HST can effectively promote the separation of photogenerated electrons and holes due to the formation of Schottky barrier or p-n junction, thus enhancing photocatalytic activity. Of note, Ag, Pd, Au, Cu2O loading exhibited obviously different performance on promoting photocatalytic activity of HST toward CO evolution and H2 evolution because of the different overpotentials of CO evolution and H2 evolution on loaded photocatalysts. Cocatalysts with low overpotentials of CO or H2 evolution act as active sites for CO or H2 evolution, thus controlling the selectivity toward CO or H2. The Au/HST exhibited high activity for only H2 evolution (17.5 μmol g−1 h−1) due to relative low overpotential for H2 evolution (0.67 V) while the Cu2O/HST exhibited high activity only for CO evolution (0.23 μmol g−1 h−1) due to relative low overpotential for CO evolution (0.40 V). The Pd/HST sample exhibits high photocatalytic activity for both CO and H2 evolution rates due to the low overpotential for CO and H2 evolution, reaching 4.0 and 4.7 times of bare HST, respectively. This work here gives an in-depth understanding of the effect of cocatalysts on promoting photocatalytic activity and selectivity and can also give guidance to design photocatalysts with high activity and selectivity for photocatalytic CO2 reduction with H2O. 相似文献
9.
Density functional theory calculations of an interaction of LiBH4 represented by n = 2−6 and 12 formula units nanoclusters with models of activated carbon and porous silica show that on both non-defective substrates only physisorption is observed for all cluster sizes. The binding energies are low, reaching up to −43 kJ/mol for smallest clusters. The charge transfer between LiBH4 and the support is not observed. On defective graphene (LiBH4)2 may adsorbed dissociatively. Hydrogens detached from BH4 groups saturates under-coordinated C atoms while the binding between BH3 moiety and underlying C atoms restores sp3-hybridization in the BH4 group. The dissociative adsorption of LiBH4 clusters leads to the retrieval of the three-fold coordination of the C atoms, the subsequent (LiBH4)2 physisorps with the differential heat of adsorption not exceeding −46 kJ/mol. The present calculations indicate that chemical interaction between matrix and lithium borohydride, leading to a destabilization of LiBH4, takes place until substrate's defects remain unsaturated. 相似文献
10.
Ying Wang Yue Meng Zheming Ni Shengjie Xia 《International Journal of Hydrogen Energy》2021,46(1):865-874
Hydrogen energy as a clean energy has great application potential, and finding efficient hydrogen storage materials has become the current research hotspot. This work studied the structure, electronic properties, thermodynamic properties and H2 adsorption performance of InN, N-defect (VN–InN), In-defect (VIn–InN), Cu atom substitutes N atom embedded InN (Cu/VN–InN) and Cu atom substitutes In atom embedded InN (Cu/VIn–InN) by density functional theory (DFT). The results show that all of the five InN materials have good thermal stability at room temperature (300 K), and the structural stability of the defective InN increases after embedding of Cu atom. Meanwhile, the hydrogen interaction on the five InN materials was investigated. Cu/VIn–InN has the best performance for H2 adsorption among the five InN materials. The adsorption energy for Cu/VIn–InN can reach ?0.769 eV, which is 4.5 times better than original InN nanosheet. After adsorbing 5H2 molecules, the average adsorption energy is ?0.399 eV that indicates Cu/VIn–InN structure still has possibility of adsorbing more hydrogen molecules and it has the potential to become a new hydrogen storage material. 相似文献
11.
《International Journal of Hydrogen Energy》2020,45(41):20993-21003
Production and storage of hydrogen from biomass component by using efficient catalysts, it can finely maintain the future energy of the world and reduce human dependence on fossil fuels. Hydrogen production mechanism via formic acid decomposition on the TiO2 anatase (101) and Pt–TiO2 surfaces in the solvent (water) and gaseous conditions performed by density functional theory (DFT) calculation. Regarding to the proposed routes, decomposition reaction of formic acid on TiO2 surface incline to be followed by second route in the water which is acceptable in terms of energy. Decomposition reaction of formic acid on Pt–TiO2 surface prefers to do it via first route (rotation around CO bond of formic acid) in solvent conditions. Furthermore, adsorption energy and geometric changes of formic acid on TiO2 anatase (101) and Pt–TiO2 surface in gaseous and solvent conditions were clearly studied. 相似文献
12.
《International Journal of Hydrogen Energy》2019,44(41):23091-23100
A facile and cost-effective method was developed for the synthesis of holey N-deficient graphitic carbon nitride nanosheets (FCN) using trifluoroacetic-acid-treated urea as a precursor. The role of trifluoroacetic acid on the composition, structure and photocatalytic performance of the prepared catalysts was carefully investigated. The obtained samples displayed laminated porous morphology with nitrogen defects, larger specific surface areas, extended range of spectral response and enhanced electron mobility of charge carriers. Consequently, the optimized catalyst FCN-400 exhibited superb photocatalytic performance and excellent cycling stability for hydrogen evolution. The hydrogen evolution rate over FCN-400 reached 309.3 μmol/h under visible light irradiation, which is 11.3-fold of that of urea-derived graphitic carbon nitride (27.3 μmol/h). 相似文献
13.
《International Journal of Hydrogen Energy》2022,47(92):39193-39203
The hydrogen adsorption behaviour of cup-stacked carbon nanotubes (CSCNTs) decorated with the platinum atom at four positions of the conical graphene layer (CGL) is investigated using density functional theory. The optimization shows that the inside lower edge position (IL) results have the best hydrogen adsorption parameters among the four positions. The Pt–H2 distance is 1.54 Å, the H–H bond length (lH-H) is 1.942 Å, and the hydrogen adsorption energy (Eads) is 1.51 eV. The hydrogen adsorption of CSCNTs decorated by Pt at the IL position also has larger Eads and lH-H than the Pt-doped planar graphene, Pt-doped single-wall carbon nanotubes and Pt-doped carbon nanocones. The Pt atom at the IL position has a more significant polarization effect on the adsorbed H2, it has trends to convert H2 into two separate H atoms. While the hydrogen adsorption behaviour at other positions belongs to the Kubas coordination, the lH-H and the Eads increased not significantly. 相似文献
14.
《International Journal of Hydrogen Energy》2022,47(68):29579-29591
W-doped graphene and its selective gas adsorption/sensing performance are studied through first-principles density functional theory (DFT) calculations. A single W atom is stably anchored into the graphene plane with a high binding energy of ?9.325 eV. The W-doped graphene interacts more strongly with H2 compared to NH3, CH4, CO, SO2 or H2S. The H2 adsorption system also has a higher adsorption energy of ?1.035 eV. Furthermore, the W-doped graphene exhibits the highest sensor response to H2 with the largest number of transferred charges and the biggest change in the band gap. A negative electric field improves the interaction between the H2 and the W-doped graphene by increasing the adsorption energy and promoting charge transfer. However, the adsorption of the H2 is significantly weakened upon the application of a positive electric field; the adsorbed H2 is easily desorbed from the W-doped graphene with a modulated recovery time as short as ~4.099 s at room temperature (300 K) upon a +0.4 V Å?1 increase in the electric field. These results reveal that the W-doped graphene has promising selective and tunable H2 adsorption/sensing performance upon the application of external electric fields. 相似文献
15.
16.
《International Journal of Hydrogen Energy》2021,46(57):29183-29197
This study proposes the steam reforming of a synthetic biogas stream containing 200 ppm of H2S, carried out in a non-commercial supported Pd–Au/Al2O3 membrane reactor (7–8 μm selective layer thickness) at 823 K and 150 kPa over a non-commercial Rh(1%)/MgAl2O4/Al2O3 catalyst. This system is able to recover almost 80% of the total hydrogen produced during the reaction and shows good resistance to the H2S contamination, as confirmed by stable methane conversions for more than 400 h under operation. For comparison, the same reaction was carried out in a commercial self-supported Pd–Ag membrane (150 μm wall thickness), yielding a hydrogen recovery equal to 40% at 623 K and 200 kPa, and presenting stable methane conversions for less than 200 h under operation due to the effect of the H2S contamination. 相似文献
17.
《International Journal of Hydrogen Energy》2020,45(12):7479-7487
In recent years, graphene oxide membranes showed interesting performances in terms of high permeating flux and perm-selectivity in several applications of gas separation because of their inherent properties combined to a low energy consumption. In this paper, a graphene oxide layer is coated on modified TiO2-alumina tubular substrate in order to prepare graphene oxide nanocomposite membranes useful for hydrogen separation. Nanocomposite graphene oxide membrane samples were obtained by using vacuum deep coating method, depositing the graphene oxide solution as single layers on TiO2-alumina substrate. Temperature and pressure variations were evaluated to achieve high H2 permeance, high H2/CO2 selectivity and membrane performance stability during the experimental tests. Furthermore, it was found that the temperature increase causes a perm-selectivity (H2/N2 and H2/CO2) decrease, while the transmembrane pressure increase involves a general improvement of the perm-selectivity. 相似文献
18.
《International Journal of Hydrogen Energy》2022,47(99):41820-41832
In this work, we proposed a mixed matrix membrane prepared by using a glycerol modified guar gum (GGP) polymer matrix incorporated with graphene oxide (GO). The influence of varying GO concentration on the gas separation performance was investigated and 2 wt% was found to be the optimum concentration for high performance. The 2 wt% GO mixed matrix membranes were further modified with Pd nanoparticles. When GO, and Pd nanoparticles were mixed, CO2 permeability increased by 49.94%, while the permeability of H2 gas molecules decreased by 98.11%, respectively, compared to the pristine GGP membrane. The selectivity of CO2/H2 was obtained as 18.27. The glass transition temperature of the membrane increased from 85 to 95.2 °C, tensile strength and elongation of the break were significantly improved by 29.09% and 84.37% through the addition of Pd and GO into the membrane. The scanning electron microscopy revealed a dense top surface after GO nanosheets incorporation. Further, the thermogravimetric analysis proposes that the modified membrane is thermally stable than GGP. Henceforth, the study suggests GO incorporation and Pd nanoparticles modification of guar gum membrane is a promising gas separation membrane with potentially high selectivity for CO2 gas. 相似文献
19.
Ahmad Arabi Shamsabadi Ali Kargari Masoud Bahrami Babaheidari 《International Journal of Hydrogen Energy》2014
In this work, PDMS/PEI membranes were synthesized and sorption and permeation of H2/CH4 mixture were studied. The influence of pressure, temperature and feed composition were investigated. It was shown that permeances increased and selectivity decreased with an increment in the feed temperature. Increasing feed pressure caused a decline in gas permeance and increased selectivity. Higher concentrations of hydrogen in the feed declined the selectivity. The effect of different non-solvents was explained by their effect on precipitation time and it was concluded that water made the membrane denser while isopropanol forms a sponge-like structure. Coagulation bath temperature made the membrane denser. Film casting and dip-coating techniques were used to prepare selective membranes. Obtained selectivity results introduced dip-coating as a better method than film casting. Sequential coating improved selectivity of the prepared membrane. Finally, sequential coating with different concentrations was applied and enhanced selectivity significantly from about 22 to more than 70. 相似文献
20.
Ayesha Raza Sarah Farrukh Arshad Hussain Imran Ullah Khan Tayyaba Noor Mohd Hafiz Dzarfan Othman Muhammad Fahad Yousaf 《国际能源研究杂志》2020,44(10):7989-7999
High cost and complex fabrication process of inorganic membranes and lower position of pristine polymeric membranes in the Robeson upper bound curve urged the researchers to develop mixed matrix membranes (MMMs). Cellulose acetate being most commercially used polymer, dominates the market of CO2 separation mainly because of low cost and environmental friendly resource. In the present study, MMMs consists of amine functionalized zeolitic imidazolate framework (NH2-ZIF-8) and cellulose triacetate were fabricated for the first time. NH2-ZIF-8 was used as a filler because the pore size of ZIF-8 is between the kinetic diameter of separating gases (CO2 and CH4). Moreover, NH2 group attached on the surface of ZIF-8 has affinity with condensable gases like CO2. Morphology, crystallinity, tensile strength and functional groups of fabricated membranes were investigated using different analytical techniques. Results revealed that the increase of feed pressure has increased CO2 permeability and decreased permselectivity. However, improvements in gas separation performance were observed with the addition of nanofiller. Best position in Robeson's upper bound curve at 4 bar was obtained with 10 wt% loading with CO2 permeability and CO2/CH4 permselectivity of 218 barrer and 13.84, respectively. The improvement in the gas separation performance with loading is attributed to the increased diffusion coefficients as well as solubility coefficients, which was increased to 33% and 3.8%, respectively. 相似文献