首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pd-based membranes prepared by pore-plating technique have been investigated for the first time under fluidization conditions. A palladium thickness around 20 μm was achieved onto an oxidized porous stainless steel support. The stability of the membranes has been assessed for more than 1300 h in gas separation mode (no catalyst) and other additional 200 h to continuous fluidization conditions. Permeances in the order of 5·10−7 mol s−1 m−2 Pa−1 have been obtained for temperatures in a range between 375 and 500 °C. During fluidization, a small decrease in permeance is observed, as consequence of the increased external (bed-to-wall) mass transfer resistances. Moreover, water gas shift (WGS) reaction cases have been carried out in a fluidized bed membrane reactor. It has been confirmed that the selective H2 separation through the membranes resulted in CO conversions beyond the thermodynamic equilibrium (of conventional systems), showing the benefits of membrane reactors in chemical conversions.  相似文献   

2.
3.
The objective of this study is to develop ceramic supports employed in the preparation of catalytic membrane reactor using less catalyst and lower temperature and enabling H2 production and separation together through the dry reforming of methane. For this reason, nine different ceramic supports are fabricated by using three different types of activated alumina (acidic, basic and neutral) and three different Si/Al molar ratios at two different calcination temperatures in order to investigate the surface acidity and basicity effect of supports to be used with impregnated Rh catalyst for rising the activity to CH4, CO2 and sensitivity to coke formation encountered with Ni-based catalysts. Subsequently, the effect of those variations on supports is determined by using XRD, SEM and BET instruments, in addition to this, H2 permeability test of five supports having high BET surface areas is also performed with using constant volume-variable pressure technique at the temperatures of between 25 and 250 °C. Acidic alumina sintered at 600 °C and containing Si/Al ratio of 0.648 represented the highest hydrogen permeability with higher activity, whereas, neutral alumina calcined at the temperature of 600 °C having Si/Al ratio of 0.555 gave the highest activity with the lower hydrogen permeability, while basic alumina sintered at the temperature of 600 °C and including Si/Al ratio of 0.648 imparted lower activity with higher hydrogen permeability.  相似文献   

4.
Results of hydrogen production study in methanol steam reforming (MSR) process with the use of Ru0.5–Rh0.5 catalysts supported on different carbon materials: synthetic graphite-like material Sibunit, carbon black Ketjenblack EC600DJ, detonation nanodiamonds (DND) and ZrO2-based material with fluorite structure, doped with ceria, have been described. The samples have been tested in conventional flow reactor and membrane (MR) reactor, containing Pd-based membranes with different composition, thickness and surface architecture. It has been shown that the catalytic activity of the composites depends on the support nature. The RuRh/DND catalyst exhibits the highest activity, whereas RuRh/Ce0.1Zr0.9O2–δ is the most selective. The use of PdAg (23%) foil with the surface modified by palladium black showed great advantages comparing to the smooth dense membrane. The use of the MR with the PdAg membrane improves the MSR reaction and provides almost 50% increase in the hydrogen yield. The hydrogen produced with the use of the MR is ultra pure.  相似文献   

5.
A high-performance organosilica membrane was prepared via sol–gel processing for use in methylcyclohexane (MCH) dehydrogenation to produce high-purity hydrogen. The membrane showed a high H2 permeance of 1.29 × 10−6 mol m−2 s−1 Pa−1, with extremely high H2/C3H8 and H2/SF6 selectivities of 6680 and 48,900, respectively, at 200 °C. The extraction of hydrogen from the membrane reactor led to the MCH conversion higher than the thermodynamic equilibrium, with almost pure hydrogen obtained in the permeate stream without considering the effect of carrier gas and sweep gas in the membrane reactor, and the organosilica membrane reactor was very stable under the reaction conditions employed.  相似文献   

6.
Steam reforming of propane was carried out in a fluidized bed membrane reactor to investigate a feedstock other than natural gas for production of pure hydrogen. Close to equilibrium conditions were achieved inside the reactor with fluidized catalyst due to the very fast steam reforming reactions. Use of hydrogen permselective Pd77Ag23 membrane panels to extract pure hydrogen shifted the reaction towards complete conversion of the hydrocarbons, including methane, the key intermediate product. Irreversible propane steam reforming is limited by the reversibility of the steam reforming of this methane. To assess the performance improvement due to pure hydrogen withdrawal, experiments were conducted with one and six membrane panels installed along the height of the reactor. The results indicate that a compact reformer can be achieved for pure hydrogen production for a light hydrocarbon feedstock like propane, at moderate operating temperatures of 475–550 °C, with increased hydrogen yield.  相似文献   

7.
Hydrogen is considered today a promising environmental friendly energy carrier for the next future, since it produces no air pollutants or greenhouse gases when it burns in air, and it possesses high energy capacity. In the last decades great attention has been devoted to hydrogen production from water splitting by photocatalysis. This technology appears very attractive thanks to the possibility to work under mild conditions producing no harmful by-products with the possibility to use renewable solar energy. Besides, it can be combined with the technology of membrane separations making the so-called photocatalytic membrane reactors (PMRs) where the chemical reaction, the recovery of the photocatalyst and the separation of products and/or intermediates simultaneously occur. In this work the basic principles of photocatalytic hydrogen generation from water splitting are reported, giving particular attention on the use of modified photocatalysts able to work under visible light irradiation. Several devices to achieve the photocatalytic hydrogen generation are presented focusing on the possibility to obtain pure hydrogen employing membrane systems and visible light irradiation. Although many efforts are still necessary to improve the performance of the process, membrane photoreactors seem to be promising for hydrogen production by overall water splitting in a cost-effective and environmentally sustainable way.  相似文献   

8.
9.
Hydrogen production via steam methane reforming with in situ hydrogen separation in fluidized bed membrane reactors was simulated with Aspen Plus. The fluidized bed membrane reactor was divided into several successive steam methane sub-reformers and membrane sub-separators. The Gibbs minimum free energy sub-model in Aspen Plus was employed to simulate the steam methane reforming process in the sub-reformers. A FORTRAN sub-routine was integrated into Aspen Plus to simulate hydrogen permeation through membranes in the sub-separator based on Sieverts' law. Model predictions show satisfactory agreement with experimental data in the literature. The influences of reactor pressure, temperature, steam-to-carbon ratio, and permeate side hydrogen partial pressure on reactor performances were investigated with the model. Extracting hydrogen in situ is shown to shift the equilibrium of steam methane reactions forward, removing the thermodynamic bottleneck, and improving hydrogen yield while neutralizing, or even reversing, the adverse effect of pressure.  相似文献   

10.
On-site hydrogen production via catalytic ammonia decomposition presents an attractive pathway to realize H2 economy and to mitigate the risk associated with storing large amounts of H2. This work reports the synthesis and characterization of a dual-layer hollow fiber catalytic membrane reactor for simultaneous NH3 decomposition and H2 permeation application. Such hollow fiber was synthesized via single-step co-extrusion and co-sintering method and constitutes of 26 μm-thick mixed protonic-electronic conducting Nd5.5Mo0.5W0.5O11.25-δ (NMW) dense H2 separation layer and Nd5.5Mo0.5W0.5O11.25-δ-Ni (NMW-Ni) porous catalytic support. This dual-layer NMW/NMW-Ni hollow fiber exhibited H2 permeation flux of 0.26 mL cm−2 min−1 at 900 °C when 50 mL min−1 of 50 vol% H2 in He was used as feed gas and 50 mL min−1 N2 was used as sweep gas. Membrane reactor based on dual-layer NMW/NMW-Ni hollow fiber achieved NH3 conversion of 99% at 750 °C, which was 24% higher relative to the packed-bed reactor with the same reactor volume. Such higher conversion was enabled by concurrent H2 extraction out of the membrane reactor during the reaction. This membrane reactor also maintained stable NH3 conversion and H2 permeation flux as well as structure integrity over 75 h of reaction at 750 °C.  相似文献   

11.
Ammonia has attracted great interest as a chemical hydrogen carrier. However, ammonia decomposition is limited kinetically rather than thermodynamically below 400 °C. We developed a tube-wall catalytic membrane reactor that could decompose ammonia with high conversion even at temperatures below 400 °C. The reactor had excellent heat transfer characteristics, and thus nearly 100% conversion for an NH3 feed of 10 mL/min at 375 °C was achieved with a 2-μm-thick palladium composite membrane, and hydrogen removal from the decomposition side resulted in a large kinetic acceleration.  相似文献   

12.
The steam reforming of methanol was investigated in a catalytic Pd–Ag membrane reactor at different operating conditions on a commercial Cu/ZnO/Al2O3 catalyst. A comprehensive two-dimensional non-isothermal stationary mathematical model has been developed. The present model takes into account the main chemical reactions, heat and mass transfer phenomena in the membrane reactor with hydrogen permeation across the PdAg membrane in radial direction. Model validation revealed that the predicted results satisfy the experimental data reasonably well under the different operating conditions. Also the impact of different operating parameters including temperature, pressure, sweep ratio and steam ratio on the performance of reactor has been examined in terms of methanol conversion and hydrogen recovery. The modeling results have indicated the high performance of the membrane reactor which is related to continuous removal of hydrogen from retentate side through the membrane to shift the reaction equilibrium towards formation of hydrogen. The obtained results have confirmed that increasing the temperature improves the kinetic properties of the catalyst and increase in the membrane's H2 permeance, which results in higher methanol conversion and hydrogen production. Also it is inferred that the hydrogen recovery is favored at higher temperature, pressure, sweep ratio and steam ratio. The model prediction revealed that at 573 K, 2 bar and sweep ratio of 1, the maximum hydrogen recovery improves from 64% to 100% with increasing the steam ratio from 1 to 4.  相似文献   

13.
La1−xSrxMO3 (M = Mn, Fe) perovskites are investigated as potential redox materials for the thermochemical production of hydrogen. Thermogravimetric oxidation/reduction experiments indicated that the materials are able to lose and uptake oxygen reversibly from their lattice up to 5.5 wt.% for La1−xSrxMnO3 with x = 1 and up to 1.7 wt.% for La1−xSrxFeO3 with x = 0. Pulse reaction experiments indicated that the materials can be used as redox catalysts in a redox process where water is dissociated giving rise to the production of pure hydrogen during the oxidation step. The oxidation and reduction steps can be combined in a membrane reactor constructed from dense perovskite membranes towards a continuous and isothermal operation. The system is also able to operate on partial pressure-based desorption without the need of a carbon-containing reductant, so that a process towards hydrogen production, based only on renewable hydrogen source such as water, can be established. At steady state and 900 °C, 25 ± 7 cm3 (STP) H2 m−2 min−1 is produced in purified state.  相似文献   

14.
The falling-film and parallel-film reactor configurations have been modeled and simulated for the case of hydrogen production from irradiated suspensions of CdS for Langmuir–Hinshelwood–Hougen–Watson (LHHW) kind of model. The variation of rate of hydrogen production in response to changes in the concentration of electrolytes, source intensity, and film thickness has also been analyzed. The amount of hydrogen produced in case of the falling-film reactor is far below that in the parallel-film reactor, due to high average velocity of falling film. The average velocity can be decreased by inclining the falling-film reactor, for which a relation between the amount of hydrogen produced and angle of inclination has been developed. The effects of electrolytes’ concentrations obtained from simulations parallel the experimentally observed results. The film thickness comes out to be the single most influential parameter for the rate of hydrogen production.  相似文献   

15.
This work investigates the performance of a fluidized-bed membrane reactor for pure hydrogen production. A techno-economic assessment of a plant with the production capacity of 100 kgH2/day was carried out, evaluating the optimum design of the system in terms of reactor size (diameter and number of membranes) and operating pressures. Starting from a biomass source, hydrogen production through autothermal reforming of two different feedstock, biogas and biomethane, is compared.Results in terms of efficiency indicates that biomethane outperforms biogas as feedstock for the system, both from the reactor (97.4% vs 97.0%) and the overall system efficiency (63.7% vs 62.7%) point of views. Nevertheless, looking at the final LCOH, the additional cost of biomethane leads to a higher cost of the hydrogen produced (4.62 €/kgH2@20 bar vs 4.39 €/kgH2@20 bar), indicating that at the current price biogas is the more convenient choice.  相似文献   

16.
The potential of the silica membrane reactors for use in the decomposition of hydrogen iodide (HI) was investigated by simulation with the aim of producing CO2-free hydrogen via the thermochemical water-splitting iodine-sulfur process. Simulation model validation was done using the data derived from an experimental membrane reactor. The simulated results showed good agreement with the experimental findings. The important process parameters determining the performance of the membrane reactor used for HI decomposition, namely, reaction temperature, total pressures on both the feed side and the permeate side, and HI feed flow rate were investigated theoritically by means of a simulation. It was found that the conversion of HI decomposition can be improved by up to four times (80%) or greater than the equilibrium conversion (20%) at 400 °C by employing a membrane reactor equipped with a tubular silica membrane. The features to design the membrane reactor module for HI decomposition of the thermochemical iodine-sulfur process were discussed under a wide range of operation conditions by evaluating the relationship between HI conversion and number of membrane tubes.  相似文献   

17.
The direct dehydrogenation of butane (BDH) is emerging as an attractive on-purpose technology for the direct production of 1,3-butadine. However, its product yield is hindered by the high rate of carbon deposition associated to the high temperature required for the highly endothermic reaction. In this work, we evaluated the use of H2-selective membrane reactor, to increase the yield of the dehydrogenation process at milder operating conditions. The novel proposed membrane reactor (MR)-assisted BDH technology is compared from a techno-economic point of view with the benchmark technology. The results of this analysis reveal that the MR technology enables to work at milder operating temperatures (?85 °C), reducing carbon formation (?98.5%) and reactor duty (?10%). Due to the higher reaction yields, the MR-assisted BDH technology can lower the required shale gas-based feedstock, maintaining same production capacity as in the benchmark; this will result in an overall plant efficiency of 50.92% in the MR-assisted plant, compared to 37.7% of the benchmark case. This work demonstrates that MR-assisted technology is a valuable alternative to the conventional BDH technology, reducing of almost 20% the final cost of production of 1,3-butadiene, due to the lower installation costs and the higher energy efficiency.  相似文献   

18.
In this work a comparison between methanol steam reforming (MSR) reaction and ethanol steam reforming (ESR) reaction to produce hydrogen in membrane reactors (MRs) is discussed from an experimental point of view.  相似文献   

19.
Thermochemical hydrogen production has attracted considerable interest as a clean energy solution to address the challenges of climate change and environmental sustainability. The thermochemical water-splitting iodine-sulfur (IS) process uses heat from nuclear or solar power and thus is a promising next-generation thermochemical hydrogen production method that is independent of fossil fuels and can provide energy security. This paper presents the current state of research and development (R&D) of the IS process based on membrane techniques using solar energy at a medium temperature of 600 °C. Membrane design strategies have the most potential for making the IS process using solar energy highly efficient and economical and are illustrated here in detail. Three aspects of membrane design proposed herein for the IS process have led to a considerable improvement of the total thermal efficiency of the process: membrane reactors, membranes, and reaction catalysts. Experimental studies in the applications of these membrane design techniques to the Bunsen reaction, sulfuric acid decomposition, and hydrogen iodide decomposition are discussed.  相似文献   

20.
In the present study a comprehensive, insightful and practical process dynamic modeling framework is developed in order to analyze and characterize the transient behavior of a Pd/alloy-based (Pd/Au or Pd/Cu) water-gas shift (WGS) membrane reactor. Furthermore, simple process control ideas are proposed aiming at enhancing process system performance by inducing the desirable dynamic characteristics in the response of the controlled process during start-up as well as in the presence of unexpected adverse disturbances (process upset episodes) or operationally favorable set-point changes that reflect new hydrogen production requirements. Finally, the proposed methods are evaluated through detailed simulation studies in an illustrative example involving a Pd/alloy-based WGS membrane reactor that exhibits complex dynamic behavior and is currently used for lab-scale pure hydrogen production and separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号