首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present anefficient algorithm for determining an aesthetically pleasing shape boundary connecting all the points in a given unorganized set of 2D points, with no other information than point coordinates. By posing shape construction as a minimisation problem which follows the Gestalt laws, our desired shape is non‐intersecting, interpolates all points and minimizes a criterion related to these laws. The basis for our algorithm is an initial graph, an extension of the Euclidean minimum spanning tree but with no leaf nodes, called as the minimum boundary complex . and can be expressed similarly by parametrizing a topological constraint. A close approximation of , termed can be computed fast using a greedy algorithm. is then transformed into a closed interpolating boundary in two steps to satisfy ’s topological and minimization requirements. Computing exactly is an NP (Non‐Polynomial)‐hard problem, whereas is computed in linearithmic time. We present many examples showing considerable improvement over previous techniques, especially for shapes with sharp corners. Source code is available online.  相似文献   

3.
The aim of removing camera shake is to estimate a sharp version x from a shaken image y when the blur kernel k is unknown. Recent research on this topic evolved through two paradigms called and . only solves for k by marginalizing the image prior, while recovers both x and k by selecting the mode of the posterior distribution. This paper first systematically analyses the latent limitations of these two estimators through Bayesian analysis. We explain the reason why it is so difficult for image statistics to solve the previously reported failure. Then we show that the leading methods, which depend on efficient prediction of large step edges, are not robust to natural images due to the diversity of edges. , although much more robust to diverse edges, is constrained by two factors: the prior variation over different images, and the ratio between image size and kernel size. To overcome these limitations, we introduce an inter‐scale prior prediction scheme and a principled mechanism for integrating the sharpening filter into . Both qualitative results and extensive quantitative comparisons demonstrate that our algorithm outperforms state‐of‐the‐art methods.  相似文献   

4.
Programmers are increasingly interested in developing applications that can be used internationally. Part of the internationalization effort is the ability to engineer applications to use dates and times that conform to local calendars yet can inter‐operate with dates and times in other calendars, for instance between the Gregorian and Islamic calendars. ZAMAN is a system that provides a natural language‐ and calendar‐independent framework for integrating multiple calendars. ZAMAN performs ‘runtime‐binding’ of calendars and language support. A running ZAMAN system dynamically loads calendars and language support tables from XML‐formatted files. Loading a calendar integrates it with other, already loaded calendars, enabling users of ZAMAN to add, compare, and convert times between multiple calendars. ZAMAN also provides a flexible, calendar‐independent framework for parsing temporal literals. Literals can be input and output in XML or plain text, using user‐defined formats, and in different languages and character sets. Finally, ZAMAN is a client/server system, enabling shared access to calendar servers spread throughout the Web. This paper describes the architecture of ZAMAN and experimentally quantifies the cost of using a calendar server to translate and manipulate dates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The determinization of a nondeterministic finite automaton (FA) is the process of generating a deterministic FA (DFA) equivalent to (sharing the same regular language of) . The minimization of is the process of generating the minimal DFA equivalent to . Classical algorithms for determinization and minimization are available in the literature for several decades. However, they operate monolithically, assuming that the FA to be either determinized or minimized is given once and for all. By contrast, we consider determinization and minimization in a dynamic context, where augments over time: after each augmentation, determinization and minimization of into is required. Using classical monolithic algorithms to solve this problem is bound to poor performance. An algorithm for incremental determinization and minimization of acyclic finite automata, called IDMA, is proposed. Despite being conceived within the narrow domain of model‐based diagnosis and monitoring of active systems, the algorithm is general‐purpose in nature. Experimental evidence indicates that IDMA is far more efficient than classical algorithms in solving incremental determinization and minimization problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we investigate the relationship between stability and internal stability of nonlinear systems. It is shown that under certain conditions, stability implies attractivity of the equilibrium and that local stability with finite gain implies local asymptotic stability of the origin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The increased programmability of graphics hardware allows efficient graphical processing unit (GPU) implementations of a wide range of general computations on commodity PCs. An important factor in such implementations is how to fully exploit the SIMD computing capacities offered by modern graphics processors. Linear expressions in the form of , where A is a matrix, and and are vectors, constitute one of the most basic operations in many scientific computations. In this paper, we propose a SIMD code optimization technique that enables efficient shader codes to be generated for evaluating linear expressions. It is shown that performance can be improved considerably by efficiently packing arithmetic operations into four‐wide SIMD instructions through reordering of the operations in linear expressions. We demonstrate that the presented technique can be used effectively for programming both vertex and pixel shaders for a variety of mathematical applications, including integrating differential equations and solving a sparse linear system of equations using iterative methods.  相似文献   

8.
This paper is concerned with the problem of control with ‐stability constraint for a class of switched positive linear systems. The ‐stability means that all the poles of each subsystem of the resultant closed‐loop system belong to a prescribed disk in the complex plane. A sufficient condition is derived for the existence of a set of state‐feedback controllers, which guarantees that the closed‐loop system is not only positive and exponentially stable with each subsystem ‐stable but also has a weighted performance for a class of switching signals with average dwell time greater than a certain positive constant. Both continuous‐time and discrete‐time cases are considered, and all of the obtained conditions are formulated in terms of linear matrix inequalities, whose solution also yields the desired controller gains and the corresponding minimal average dwell time. Numerical examples are given to illustrate the effectiveness of the presented approach.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Global illumination systems require intervisibility information between pairs of points in a scene. This visibility problem is computationally complex, and current interactive implementations for dynamic scenes are limited to crude approximations or small amounts of geometry. We present a novel algorithm to determine intervisibility from all points of dynamic height fields as visibility horizons in discrete azimuthal directions. The algorithm determines accurate visibility along each azimuthal direction in time linear in the number of output visibility horizons. This is achieved by using a novel visibility structure we call the convex hull tree. The key feature of our algorithm is its ability to incrementally update the convex hull tree such that at each receiver point only the visible parts of the height field are traversed. This results in low time complexity; compared to previous work, we achieve two orders of magnitude reduction in the number of algorithm iterations and a speedup of 2.4 to 41 on height fields, depending on geometric content.  相似文献   

10.
Recently, it has been enlightened the interest of a class of switching rules with good properties, which are called eventually periodic: more precisely, it has been proven that a finite family of linear vector fields of can be stabilized by means of eventually periodic switching rules provided that it is asymptotically controllable and satisfies an additional finite time controllability condition. Unfortunately, simple examples point out that in general, eventually periodic switching rules are not robust with respect to state measurement errors. In this paper, we introduce a new type of switching rules with improved robustness properties, which are called recurrent switching rules. They are subject to the construction of a finite sequence of complete cones Γ1, … ,ΓH of . We shown that, if a stabilizing eventually periodic switching rule for is known, then Γ1, … ,ΓH can be constructed in such a way that is stabilized by any recurrent switching rule subject to Γ1, … ,ΓH. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In predicting time series, if a trend includes a structural break, then a state space model can be applied to revise the predictive method. Some scholars suggest that restricted damped trend models yield excellent prediction results by automatically revising unforeseen structural break factors in the prediction process. Restricted damped trend models add a smoothed error statistic to a local‐level model and use the exponentially weighted moving average (EWMA) method to make corrections. This paper applies the generally weighted moving average (GWMA) concept and method to a restricted damped trend model that changes the smoothed error statistic from the EWMA form to the GWMA form and adds the correction parameter λ, which distinguishes three situations , , and . The original restricted damped trend model applies only to , enabling the model to capture situations in which and increases its generality. This paper also compares the effect of various parameter values on the predictive model and finds the range of parameter settings that optimize the model.  相似文献   

12.
Let be a simple graph with nodes and links, a subset of “terminals,” a vector , and a positive integer d, called “diameter.” We assume that nodes are perfect but links fail stochastically and independently, with probabilities . The “diameter‐constrained reliability” (DCR) is the probability that the terminals of the resulting subgraph remain connected by paths composed of d links, or less. This number is denoted by . The general DCR computation belongs to the class of ‐hard problems, since it subsumes the problem of computing the probability that a random graph is connected. The contributions of this paper are twofold. First, a full analysis of the computational complexity of DCR subproblems is presented in terms of the number of terminal nodes and the diameter d. Second, we extend the class of graphs that accept efficient DCR computation. In this class, we include graphs with bounded co‐rank, graphs with bounded genus, planar graphs, and, in particular, Monma graphs, which are relevant to robust network design.  相似文献   

13.
The synthesis of controllers that minimize a performance index subject to a strictly positive real (SPR) constraint is considered. Two controller synthesis methods are presented that are then combined into an iterative algorithm. Each method synthesizes optimal SPR controllers by posing a convex optimization problem where constraints are enforced via linear matrix inequalities. Additionally, each method fixes the controller state‐feedback gain matrix and finds an observer gain matrix such that an upper bound on the closed‐loop ‐norm is minimized and the controller is SPR. The first method retools the standard ‐optimal control problem by using a common Lyapunov matrix variable to satisfy both the criteria and the SPR constraint. The second method overcomes bilinear matrix inequality issues associated with the performance and the SPR constraint by employing a completing the square method and an overbounding technique. Both synthesis methods are used within an iterative scheme to find optimal SPR controllers in a sequential manner. Comparison of our synthesis methods to existing methods in the literature is presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Choosing balls that best approximate a 3D object is a non‐trivial problem. To answer it, we first address the inner approximation problem, which consists of approximating an object defined by a union of n balls with balls defining a region . This solution is further used to construct an outer approximation enclosing the initial shape, and an interpolated approximation sandwiched between the inner and outer approximations. The inner approximation problem is reduced to a geometric generalization of weighted max k‐cover, solved with the greedy strategy which achieves the classical lower bound. The outer approximation is reduced to exploiting the partition of the boundary of by the Apollonius Voronoi diagram of the balls defining the inner approximation. Implementation‐wise, we present robust software incorporating the calculation of the exact Delaunay triangulation of points with degree two algebraic coordinates, of the exact medial axis of a union of balls, and of a certified estimate of the volume of a union of balls. Application‐wise, we exhibit accurate coarse‐grain molecular models using a number of balls 20 times smaller than the number of atoms, a key requirement to simulate crowded cellular environments.  相似文献   

15.
P. Ferrara 《Software》2013,43(6):663-684
In this paper, we present heckmate , the first generic static analyzer of multithreaded Java programs based on abstract interpretation. heckmate can be tuned at different levels of precision and efficiency in order to prove various properties (e.g., absence of divisions by zero and data races), and it is sound for multithreaded programs. It supports all the most relevant features of Java multithreading, such as dynamic thread creation, runtime creation of monitors, and dynamic allocation of memory. The experimental results demonstrate that heckmate is accurate and efficient enough to analyze programs with some thousands of statements and a potentially infinite number of threads. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This paper deals with the presentation of polynomial time (approximation) algorithms for a variant of open‐shop scheduling, where the processing times are only machine‐dependent. This variant of scheduling is called proportionate scheduling and its applications are used in many real‐world environments. This paper develops three polynomial time algorithms for the problem. First, we present a polynomial time algorithm that solves the problem optimally if , where n and m denote the numbers of jobs and machines, respectively. If, on the other hand, , we develop a polynomial time approximation algorithm with a worst‐case performance ratio of that improves the bound existing for general open‐shops. Next, in the case of , we take into account the problem under consideration as a master problem and convert it into a simpler secondary approximation problem. Furthermore, we formulate both the master and secondary problems, and compare their complexity sizes. We finally present another polynomial time algorithm that provides optimal solution for a special case of the problem where .  相似文献   

17.
This paper focuses on the graphical tuning method of fractional order proportional integral derivative (FOPID) controllers for fractional order uncertain system achieving robust ‐stability. Firstly, general result is presented to check the robust ‐stability of the linear fractional order interval polynomial. Then some alternative algorithms and results are proposed to reduce the computational effort of the general result. Secondly, a general graphical tuning method together with some computational efficient algorithms are proposed to determine the complete set of FOPID controllers that provides ‐stability for interval fractional order plant. These methods will combine the results for fractional order parametric robust control with the method of FOPID ‐stabilization for a fixed plant. At last, two important extensions will be given to the proposed graphical tuning methods: determine the ‐stabilizing region for fractional order systems with two kinds of more general and complex uncertainty structures: multi‐linear interval uncertainty and mixed‐type uncertainties. Numerical examples are followed to illustrate the effectiveness of the method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
This paper considers the problem of achieving a very accurate tracking of a pre‐specified desired output trajectory , for linear, multiple input multiple output, non‐minimum phase and/or non hyperbolic, sampled data, and closed loop control systems. The proposed approach is situated in the general framework of model stable inversion and introduces significant novelties with the purpose of reducing some theoretical and numerical limitations inherent in the methods usually proposed. In particular, the new method does not require either a preactuation or null initial conditions of the system. The desired and the corresponding sought input are partitioned in a transient component ( and ut(k), respectively) and steady‐state ( and us(k), respectively). The desired transient component is freely assigned without requiring it to be null over an initial time interval. This drastically reduces the total settling time. The structure of ut(k) is a priori assumed to be given by a sampled smoothing spline function. The spline coefficients are determined as the least‐squares solution of the over‐determined system of linear equations obtained imposing that the sampled spline function assumed as reference input yield the desired output over a properly defined transient interval. The steady‐state input us(k) is directly analytically computed exploiting the steady‐state output response expressions for inputs belonging to the same set of .  相似文献   

19.
This paper investigates the problem of quantized filtering for a class of discrete‐time linear parameter‐varying systems with Markovian switching under data missing. The measured output of the plant is quantized by a logarithmic mode‐independent quantizer. The data missing phenomenon is modeled by a stochastic variable. The purpose of the problem addressed is to design a full‐order filter such that the filtering error dynamics is stochastically stable and the prescribed noise attenuation level in the sense can be achieved. Sufficient conditions are derived for the existence of such filters in terms of parameterized linear matrix inequalities. Then the corresponding filter synthesis problem is transformed into a convex optimization problem that can be efficiently solved by using standard software packages. A simulation example is utilized to demonstrate the usefulness of the developed theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
index of mean‐field stochastic differential equations (SDE) is investigated in this paper. For systems with state‐ and input‐dependent noise, we obtain a sufficient condition of index larger than some λ>0 via the solvability of differential Riccati equations (DRE). Especially, a necessary and sufficient condition is given for mean‐field SDE with state‐dependent noise, which generalize the corresponding results of classical stochastic systems to the mean‐field stochastic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号