首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A non-stoichiometric thermodynamic analysis is performed on the adsorption-enhanced steam reforming of glycerol for hydrogen production based on the principle of minimising the Gibbs free energy. The effects of temperature (600–1000 K), pressure (1–4 bar), water to glycerol feed ratio (3:1–12:1), percentage of CO2 adsorption (0–99%) and molar ratio of carrier gas to feed reactants (1:1–5:1) on the reforming reactions and carbon formation are examined. The results show that the use of a CO2 adsorbent enhances glycerol conversion to hydrogen and the maximum number of moles of hydrogen produced per mole of glycerol can be increased from 6 to 7 due to the CO2 adsorption. The analyses suggest that the most favourable temperature for steam–glycerol reforming is between 800 and 850 K in the presence of a CO2 adsorbent, which is about 100 K lower than that for reforming without CO2 adsorption. Although high pressures are favourable for CO2 adsorption, a lower operating pressure gives a higher overall hydrogen conversion. The most favourable water to glycerol feed ratio is found to be 9.0 above which the benefit becomes marginal. Carbon formation could occur at low water to glycerol feed ratios, and the use of a CO2 adsorbent can suppress the formation reaction and substantially reduce the lower limit of the water to glycerol feed ratio for carbon formation.  相似文献   

2.
Thermodynamic equilibrium for glycerol steam reforming to hydrogen with carbon dioxide capture was investigated using Gibbs free energy minimization method. Potential advantage of using CaO as CO2 adsorbent is to generate hydrogen-rich gas without a water gas shift (WGS) reactor for proton exchange membrane fuel cell (PEMFC) application. The optimal operation conditions are at 900 K, the water-to-glycerol molar ratio of 4, the CaO-to-glycerol molar ratio of 10 and atmospheric pressure. Under the optimal conditions, complete glycerol conversion and 96.80% H2 and 0.73% CO concentration could be achieved with no coke. In addition, reaction conditions for coke-free and coke-formed regions are also discussed in glycerol steam reforming with or without CO2 separation. Glycerol steam reforming with CO2 adsorption has the higher energy efficiency than that without adsorption under the same reaction conditions.  相似文献   

3.
The characteristics of methane autothermal reforming to generate hydrogen were studied with thermodynamic equilibrium constant method. Results show that the methane steam reforming reaction is prone to backward at low temperature, and there is an inflection point temperature that the reaction turns forward. When steam–methane molar ratio is 2, the inflection point temperature increases with raising air–methane molar ratio. When air–methane molar ratio is 1, the inflection point temperature maintains between 700 and 800 K. Hydrogen yield increases firstly and then decreases with elevated temperature. The increase of air–methane molar ratio leads to a lower hydrogen production when temperature exceeds 1000 K. Increasing steam–methane molar ratio promotes the hydrogen production. Methane autothermal reforming occurs much more easily when temperature keeps at 1000 K and the molar ratio of air–methane and steam–methane is 1 and 2 respectively. Changing the steam–methane molar ratio can regulate H2/CO molar ratio.  相似文献   

4.
Both biobutanol and urea are the environment-friendly hydrogen carrier. This study is to compare hydrogen production between steam reforming of biobutanol and autothermal reforming of biobutanol feed using pure steam and vaporization of aqueous urea (VAU) by a thermodynamic analysis. Hydrogen-rich syngas production, carbon formation, thermal neutral temperature (TNT), and hydrogen production cost are analyzed in both steam reforming and autothermal reforming. The results show that hydrogen-rich syngas production with the use of VAU is higher than that with pure steam not only in steam reforming but also in autothermal reforming. When the VAU/butanol molar ratio is 8, and the O2/butanol molar ratio equals 3, the reforming efficiency reaches up to 81.42%. At the same condition, the hydrogen production cost is lower than that without blending urea. Therefore, using VAU to replace pure steam in biobutanol reforming leads to benefits of increasing the hydrogen-rich syngas yield and lowering cost.  相似文献   

5.
Thermodynamic features of hydrogen production by glycerol steam reforming with in situ hydrogen extraction have been studied with the method of Gibbs free energy minimization. The effects of pressure (1–5 atm), temperature (600–1000 K), water to glycerol ratio (WGR, 3–12) and fraction of H2 removal (f, 0–1) on the reforming reactions and carbon formation were investigated. The results suggest separation of hydrogen in situ can substantially enhance hydrogen production from glycerol steam reforming, as 7 mol (stoichiometric value) of hydrogen can be obtained even at 600 K due to the hydrogen extraction. It is demonstrated that atmospheric pressure and a WGR of 9 are suitable for hydrogen production and the optimum temperature for glycerol steam reforming with in situ hydrogen removal is between 825 and 875 K, 100 K lower than that achieved typically without hydrogen separation. Furthermore, the detrimental influence of increasing pressure in terms of hydrogen production becomes marginal above 800 K with a high fraction of H2 removal (i.e., f = 0.99). High temperature and WGR are favorable to inhibit carbon production.  相似文献   

6.
Hydrogen can be produced by autothermal reforming of glycerol using supercritical water (SCW). With the aid of AspenPlus™, a systematic thermodynamic analysis of this process has been carried out by the total Gibbs free energy minimization method, which computes the equilibrium composition of synthesis gas (syngas). The predictive Soave-Redlich-Kwong equation of state (EOS) has been used as thermodynamic method in the simulation of the supercritical region. A sensitivity analysis has been conducted both for a pure glycerol feed and pretreated crude glycerol feed coming from biodiesel production. Simulations run so as to calculate the O2 needed to enter the Gibbs reactor (reformer) for achieving the thermoneutral condition (no external heat to sustain the reformer operation is required). Thus, the effect of the main operating parameters (reforming temperature, water to glycerol mole ratio, glycerol purity in the feed of crude glycerol, oxygen to glycerol mole ratio and the inlet feed temperature) aimed to the hydrogen production has been investigated, by obtaining the mole fraction and molar flow-rate of components in syngas, as well as the hydrogen yield. By this way, the most thermodynamic favorable operating conditions at which glycerol may be converted into hydrogen by autothermal reforming using SCW have been identified. As a second part of the study, a conceptual design and an energy and exergy analysis of the overall process will be performed later.  相似文献   

7.
A pathway for hydrogen production from supercritical water reforming of glycerol integrated with in situ CO2 removal was proposed and analyzed. The thermodynamic analysis carried out by the minimizing Gibbs free energy method of three glycerol reforming processes for hydrogen production was investigated in terms of equilibrium compositions and energy consumption using AspenPlus™ simulator. The effect of operating condition, i.e., temperature, pressure, steam to glycerol (S/G) ratio, calcium oxide to glycerol (CaO/G) ratio, air to glycerol (A/G) ratio, and nickel oxide to glycerol (NiO/G) ratio on the hydrogen production was investigated. The optimum operating conditions under maximum H2 production were predicted at 450 °C (only steam reforming), 400 °C (for autothermal reforming and chemical looping reforming), 240 atm, S/G ratio of 40, CaO/G ratio of 2.5, A/G ratio of 1 (for autothermal reforming), and NiO/G ratio of 1 (for chemical looping reforming). Compared to three reforming processes, the steam reforming obtained the highest hydrogen purity and yield. Moreover, it was found that only autothermal reforming and chemical looping reforming were possible to operate under the thermal self-sufficient condition, which the hydrogen purity of chemical looping reforming (92.14%) was higher than that of autothermal reforming (52.98%). Under both the maximum H2 production and thermal self-sufficient conditions, the amount of CO was found below 50 ppm for all reforming processes.  相似文献   

8.
Hydrogen production by the water gas shift reaction (WGS) is equilibrium limited. In the current study, we demonstrate that the overall efficiency of the WGS can be improved by co-feeding methanol and removing CO2 in situ. The thermodynamics of the water gas shift and methanol reforming/WGS (methanol-to-shift, MtoS) reactions for H2 production alone and with simultaneous CO2 adsorption (sorption-enhanced, SEWGS and SEMtoS) were studied using a non-stoichiometric approach based on the minimisation of the Gibbs free energy. A typical composition of the effluent from a steam methane reformer was used for the shift section. The effects of temperature (450–750 K), pressure (5–30 barg), steam and methanol addition, fraction of CO2 adsorption (0–95%) and energy efficiency of the shift systems have been investigated. Adding methanol to the feed facilitates autothermal operation of the shift unit, with and without CO2 removal, and enhances significantly the amount of H2 produced. For a set methanol and CO input, the MtoS and SEMtoS systems show a maximum productivity of H2 between 523 and 593 K due to the increasing limitation of the exothermic shift reaction while the endothermic methanol steam reforming is no longer limited above 593 K. The heat of adsorption of CO2 was found to make only a small difference to the H2 production or the autothermal conditions.  相似文献   

9.
The performance of a new Rh/CeSiO2 catalyst supported on a ceramic monolith for steam reforming (SR) of ethanol for hydrogen generation was investigated. It provides several advantages over a traditional pellet based catalyst in that it will reduce weight, size and pressure drop in the reactor. The effect of steam to ethanol molar ratio and temperature were first investigated on a powdered catalyst in order to establish the preferred reaction conditions to be used for tests on the monolith. The optimum temperature for coke free, high selectivity and stable catalyst operation was 1073 K at a steam to ethanol molar ratio of 3.5. The monolith supported catalyst was evaluated for aging stability, on/off performance and coke regeneration using steam gasification. After 96 h of SR of ethanol at 1028 K and water/ethanol molar ratio of 3.5 the monolith supported catalyst retained stable performance throughout the entire time on stream with the only products being H2, CO, CO2. Some coke formation was observed using Raman spectra, however, it did not cause any permanent deactivation. Regeneration via steam gasification at 973 K with 20% steam in N2 was successful for coke removal and complete catalyst regeneration.  相似文献   

10.
A systematic study focused on the aqueous-phase reforming of glycerol has been carried out in order to analyze the influence of several operating variables (system pressure, reaction temperature, glycerol content in feed, liquid feeding rate and catalyst weight/glycerol flow rate ratio) on the gas and liquid products. A continuous flow bench scale installation and a Ni/Al coprecipitated catalyst were employed. The system pressure was varied from 28 to 40 absolute bar, the reaction temperature was analyzed from 495 to 510 K, the glycerol content in the feed was studied from 2 to 10 wt%, the liquid feeding rate was changed from 0.5 to 3.0 mL/min and the catalyst weight/glycerol flow rate ratio varied from 10 to 40 g catalyst min/g glycerol. The main gas products obtained were H2, CO2 and CH4, while the main liquid products were 1,2-propanediol, ethylene glycol, acetol and ethanol. A W/mglycerol ratio of 40 g catalyst min/g glycerol, 34 bar, 500 K, 5 wt% glycerol and 1 mL/min, resulted in a high yield to H2 (6.8%), the highest yield to alkanes (10.7%), the highest 1,2-propanediol yield (0.20 g/g glycerol) and the highest ethylene glycol yield (0.11 g/g glycerol). The highest acetol yield (0.06 g/g glycerol) was obtained at 34 bar, 500 K, 5 wt% glycerol, 20 g catalyst min/g glycerol and 3 mL/min.  相似文献   

11.
Steam reforming is the most favored method for the production of hydrogen. Hydrogen is mostly manufactured by using steam reforming of natural gas. Due to the negative environmental impact and energy politics, alternative hydrogen production methods are being explored. Glycerol is one of the bio-based alternative feedstock for hydrogen production. This study is aimed to simulate hydrogen production from glycerol by using Aspen Plus. First of all, the convenient reactor type was determined. RPlug reactor exhibited the highest performance for the hydrogen production. A thermodynamic model was determined according to the formation of byproduct. The reaction temperature, water/glycerol molar feed ratio as reaction parameters and reactor pressure were investigated on the conversion of glycerol and yield of hydrogen. Optimum reaction parameters are determined as 500 °C of reaction temperature, 9:1 of water to glycerol ratio and 1 atm of pressure. Reactor design was also examined. Optimum reactor diameter and reactor length values were determined as 5 m and 50 m, respectively. Hydrogen purification was studied and 99.9% purity of H2was obtained at 25 bar and 40 °C. The obtained results were shown that Aspen Plus has been successfully applied to investigate the effects of reaction parameters and reactor sizing for hydrogen production from glycerol steam reforming.  相似文献   

12.
In this study, the H2-rich syngas (H2 + CO) production from biomass derived gas (BDG) by dry autothermal reforming (DATR) is investigated. Methane and carbon dioxide is the major composition of biomass derived gas. DATR reaction combined benefits of partial oxidation (POX) and dry reforming (DR) reaction was carried out in this study. The reforming parameters on the conversion of methane and syngas selectivity were explored. The reforming parameters included the fuel feeding rate, CO2/CH4 and O2/CH4 molar ratios. The experimental results demonstrated that it not only supplied the energy required for self-sustained reaction, but also avoided the coke formation by dry autothermal reforming. It has a wide operation region to maintain the moderate production of the syngas. During the reforming process, the reformate gas temperature was between 650 and 900 °C, and energy loss percentage in reforming process was between 15 and 30%. Further, high CO2 concentration in the reactant had a considerable influence on the heat release of oxidation, and thereby decreased the reformate gas temperature. It caused the reduction of synthesis gas concentration and assisting/impeding combustion composition (A/I) ratio. However, it was favorable to CO selectivity because of the reverse water-gas shifting reaction. The H2/CO molar ratio between 1 and 2 was achieved by varying CO2/CH4 molar ratio. However, the syngas concentrations were affected by CO2/CH4 and O2/CH4 molar ratio.  相似文献   

13.
Thermodynamic equilibrium constant method and mathematical model are used to analyze the investigating effects of temperature, α[oxygen‐methane molar ratio] and β [carbon dioxide‐methane molar ratio] on characteristics of oxidative CO2 reforming of methane reaction over Ni/Al2O3 catalysts to produce hydrogen in the membrane reactor. While keeping temperature at 1100 K, the membrane reactor is no longer useful to separate hydrogen when α > 0.6 for hydrogen in reaction side is no longer to permeate side. When increasing β, the methane conversion goes up firstly until the β is 1.3, which is higher than the inflection point at 1.1 in the model prediction. The hydrogen yield peaks at β = 0.5 in permeate side. Increasing the temperature or reducing the β will cause the molar ratio of H2/CO increase. However, changing α has no significant effect on adjusting the molar ratio of H2/CO. By establishing equilibrium reaction model, the system performance can be accurately predicted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In this work, thermodynamics was applied to investigate the glycerol autothermal reforming to generate hydrogen for fuel cell application. Equilibrium calculations employing the Gibbs free energy minimization were performed in a wide range of temperature (700–1000 K), steam to glycerol ratio (1–12) and oxygen to glycerol ratio (0.0–3.0). Results show that the most favorable conditions for hydrogen production are achieved with the temperatures, steam to glycerol ratios and oxygen to glycerol ratios of 900–1000 K, 9–12 and 0.0–0.4, respectively. Further, it is demonstrated that thermoneutral conditions (steam to glycerol ratio 9–12) can be obtained at oxygen to glycerol ratios of around 0.36 (at 900 K) and 0.38–0.39 (at 1000 K). Under these thermoneutral conditions, the maximum number of moles of hydrogen produced are 5.62 (900 K) and 5.43 (1000 K) with a steam to glycerol ratio of 12. Also, it should be noted that methane and carbon formation can be effectively eliminated.  相似文献   

15.
Thermodynamic analysis of hydrogen production from propanol reforming reactions, by decomposition and steam reforming, in presence of hydrazine was evaluated as a function of temperature (300–900 K) at a constant pressure of 1 atm. The molar ratio of reactants were varied to identify the conditions leading to hydrogen rich product stream with low carbon formation. Steam reforming of propanol displayed higher hydrogen production and a gradual decrease in carbon content with an increase in the steam/propanol ratio. Addition of hydrazine leads to a further enhancement in hydrogen amount along with a suppression in coking. A similar trend was observed in case of propanol decomposition reaction. Addition of hydrazine leads to a favorable condition for hydrogen production along with a decrease in carbon formation. In both, steam reforming and decomposition, methane and water seem to be the stable products at low temperature, which react together at elevated temperatures following steam reforming of methane to generate CO and hydrogen. Hydrazine, on the other hand diminishes carbon at low temperature and produces ammonia, which decomposes at higher temperature to generate hydrogen and nitrogen. It is clear that steam assists in eliminating carbon at higher temperature whereas hydrazine is helpful in removing carbon formation at lower temperature. Also, a considerably high ratio of H2/CO can be maintained in both the reactions, propanol steam reforming and propanol decomposition, by introducing a hydrazine stream in the feed.  相似文献   

16.
A thermodynamic analysis of the oxidative steam reforming of glycerol (OSRG) for hydrogen production has been carried out with Aspen plus TM. The reaction was investigated at ambient pressure within the carbon-to-oxygen (C/O) ratio of 0.5–3.0, steam-to-carbon (S/C) ratio of 0.5–8.0 and temperature of 400–850 °C. Higher C/O and S/C ratios favor the production of hydrogen from glycerol. The highest hydrogen selectivity is obtained at 600–700 °C. To predict the potential technical obstacles in the glycerol reforming process, the OSRG process was compared with oxidative steam reforming of ethanol (OSRE) in terms of hydrogen production, autothermal condition and carbon deposition. The selectivity to hydrogen via OSRG is lower than that via OSRE under identical conditions. To achieve autothermal reforming, higher S/C and C/O ratios are required for reforming of glycerol than for ethanol due to the higher oxygen content in a glycerol molecule. From the viewpoint of thermodynamics, the glycerol reforming is more resistant to the carbon deposition. On the basis of the thermodynamic analysis and the preliminary experimental study, suggestions were proposed to guide the development of the glycerol reforming technique.  相似文献   

17.
A supercritical water reactor with throughput of 10  kg/h was set up, which was operated with continuous feeding of coal water slurry. The effects of reaction temperature (500–650 °C), pressure (20.0–30.0 MPa), Ca/C molar ratio (0–0.45) and O/C molar ratio (0–0.35) on the hydrogen generation characteristics were investigated. It is found that there is a notable increase in the hydrogen content and yield with the increase of reaction temperature. The hydrogen yield increases from 24.67 ml/g to 135.73 ml/g when the temperature increases from 500 °C to 650 °C. The contents of CO2 in gas product decrease, while that of hydrogen increases with the increase of Ca/C molar ratio. At Ca/C molar ratio of 0.45, nearly all CO2 is fixed. Correspondingly, the content of hydrogen in gas is 73.29%, and the yield of hydrogen is 348.30 ml/g compared to 135.42 ml/g in the absent of CaO. Moreover, both of CaO and KOH catalyze gasification and water-shift reaction. The formation of hydrogen and the carbon gasification efficiency are improved by the added H2O2 when O/C ratio is less than 0.3.  相似文献   

18.
In order to improve the hydrogen production efficiency by glycerol steam reforming, a membrane-assisted fluidized bed reactor with carbon dioxide sorption is developed to enhance the reforming process. Low-temperature operation in a membrane reactor is necessary considering the thermal stability of membrane. In this work, the sorption-enhanced glycerol steam reforming process in a fluidized bed membrane reactor under the condition of low temperature is numerically investigated, where the hydrotalcite is employed as CO2 sorbents. The impact of operating pressure on the reforming performance is further evaluated. The results demonstrate that the integration of membrane hydrogen separation and CO2 sorption can effectively enhance the low-temperature glycerol reforming performance. The fuel conversion above 95% can be achieved under an elevated pressure.  相似文献   

19.
《Journal of power sources》2006,159(2):1274-1282
The boundary of carbon formation for the dry reforming of methane in direct internal reforming solid oxide fuel cells (DIR-SOFCs) with different types of electrolyte (i.e., an oxygen ion-conducting electrolyte (SOFC-O2−) and a proton-conducting electrolyte (SOFC-H+)) was determined by employing detailed thermodynamic analysis. It was found that the required CO2/CH4 ratio decreased with increasing temperature. The type of electrolyte influenced the boundary of carbon formation because it determined the location of water formed by the electrochemical reaction. The extent of the electrochemical reaction also played an important role in the boundary of carbon formation. For SOFC-O2−, the required CO2/CH4 ratio decreased with the increasing extent of the electrochemical reaction due to the presence of electrochemical water in the anode chamber. Although for SOFC-H+ the required CO2/CH4 ratio increased with the increasing extent of the electrochemical reaction at high operating temperature (T > 1000 K) following the trend previously reported for the case of steam reforming of methane with addition of water as a carbon suppresser, an unusual opposite trend was observed at lower operating temperature. The study also considered the use of water or air as an alternative carbon suppresser for the system. The required H2O/CH4 ratio and air/CH4 ratio were determined for various inlet CO2/CH4 ratios. Even air is a less attractive choice compared to water due to the higher required air/CH4 ratio than the H2O/CH4 ratio; however, the integration of exothermic oxidation and the endothermic reforming reactions may make the use of air attractive. Water was found to be more effective than carbon dioxide in suppressing the carbon formation at low temperatures but their effect was comparable at high temperatures. Although the results from the study were based on calculations of the SOFCs with different electrolytes, they are also useful for selecting suitable feed compositions for other reactors; including conventional reformers and membrane reactors with hydrogen removal.  相似文献   

20.
This work is focused at optimizing an ethanol reforming process over a Ni/Cu catalyst to produce a hydrogen rich stream in order to feed a solid polymer fuel cell (SPFC). The effect of the reaction temperature, H2O/EtOH and O2/EtOH molar ratios of the feed to the reformer was studied under diluted conditions in order to maximize the hydrogen content and the CO2/COx molar ratio at the outlet of the ethanol reformer. Based on the experimental results, a detailed kinetic scheme of the ethanol reforming was discussed as a function of the temperature, special attention was paid to the role of oxygen in the reaction selectivity and coke formation. Moreover, the coke nature was evaluated by transmission electron microscopy (TEM) and TPO and TPH experiments. The tests carried out at on-board reformer conditions allowed a hydrogen rich mixture (33%) in the outlet reformer flow that can be even increased by water gas sift reactions downstream. The high hydrogen content of the flow to the fuel cell together with the stability of the Ni/Cu catalyst, fully demonstrated by long time runs, can be considered of high interest for SPFC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号