首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organically modified montmorillonites are valuable materials that have been used to improve the permeability, water retention, and proton conductivity of proton exchange membrane for fuel cells. A sulfonated montmorillonite/sulfonated poly (biphenyl ether sulfone)/Polytetrafluoroethylene (SMMT/SPSU-BP/PTFE) composite membrane was prepared for fuel cells. The thermal stability of the SMMT was tested by the thermogravimetry-mass spectrometry (TGA-MS) and its structure in the composite membrane was characterized by X-ray diffraction (XRD). It was found that SMMT was stable up to 205 °C and the interlayer distance of the nanoclay expanded from 1.43 nm to 1.76 nm after the organic sulfonic modification. The SMMT was completely exfoliated in the composite membranes. The properties of ion-exchange capacity, water uptake, swelling ratio, proton conductivity, and mechanical strength of the composite membranes were investigated as well. The good water retention of SMMT made the SMMT/SPSU-BP and SMMT/SPSU-BP/PTFE composite membranes have about 20% more bound water than the SPSU-BP membrane. Due to the reinforce effect of the PTFE porous film, the SMMT/SPSU-BP/PTFE composite membrane presented low swelling even at elevated temperature and high stress strength. All of the properties indicate that the SMMT/SPSU-BP/PTFE composite membrane is very promising as the PEM for medium temperature PEMFCs.  相似文献   

2.
Forming a coating on metals by surface treatment is a good way to get high performance bipolar plate of proton exchange membrane fuel cell (PEMFC). In our research, Ag–polytetrafluoroethylene (PTFE) composite film was electrodeposited with silver-gilt solution of nicotinic acid by a bi-pulse electroplating power supply on 316 L stainless steel bipolar plate of PEMFC. Surface topography, contact angle, interfacial conductivity and corrosion resistance of the bipolar plate samples were investigated. Results showed that the defects on the Ag–PTFE composite coating are greatly reduced compared with those on the pure Ag coating fabricated under the same condition; and the contact angle of the Ag–PTFE composite coating with water is 114°, which is much bigger than that of the pure Ag coating (73°). In addition, the interfacial contact resistance of the composite coating stays as low as the pure Ag coating; and the bipolar plate sample with composite coating shows a close corrosion resistance to the pure Ag coating sample in potentiodynamic and potentiostatic tests. Coated 316 L stainless steel plate with Ag–PTFE composite coating exhibits well hydrophobic characteristic, less defects, high interfacial conductivity and good corrosion resistance, which shows a great potential of the application in PEMFC.  相似文献   

3.
Graphite/polymer composites have high corrosion resistance, low contact resistance and low fabrication cost but low cell efficiency and mechanical strength. This study examined the electrical and mechanical properties of graphite/polypropylene composite bipolar plates. Carbon nanotubes (CNTs) were used to improve the electrical properties of the graphite/PP composites. Although the electrical properties increased when excess conducting filler was added to the composite, the mechanical strength decreased significantly. 304 stainless steel (304 SS) plates with different thicknesses were used as the support material of a graphite/PP composite bipolar plate. The 304 SS-supported graphite/PP composite bipolar plate had an optimum CNTs/graphite/PP composite composition of 1.2, 83 and 17 wt.%, respectively. The flexural strength of the 304 SS-supported graphite/PP composites increased from 35 to 58 MPa with increasing 304 SS thickness from 0.5 to 1 mm. The power density of the graphite bipolar plate and 304 SS-supported graphite/PP composite bipolar plate were 968 and 877 mW cm−2, respectively. The 304 SS complemented the mechanical strength of the graphite/PP composite bipolar plate as well as the cell efficiency.  相似文献   

4.
The bottlenecks of commercial application of proton exchange membranes (PEM) fuel cell are cost and oxidation stability of PEM. Hence, we encapsulate Resveratrol (Res, a kind of reductant) in hydroxypropyl-β-cyclodextrins (CDs) to prepare the inclusion complexes of Res and CDs (Res@CDs) under the guidance of theoretical arithmetic. Then the Res@CDs are evenly dispersed in Nafion emulsion, which is subsequently combined with porous polytetrafluoroethylene (PTFE) substrate by emulsion pouring method to form the antioxidative composite membrane (Res@CDs-Nafion/PTFE). The as-prepared Res@CDs-Nafion/PTFE shows the similar performance on proton conductivity (103.9 mS cm−1) and hydrogen-air fuel cell (317.84 mW cm−2) compared to the Nafion/PTFE composite membrane. The content of Nafion in the Res@CDs-Nafion/PTFE is less than 30%, which dramatically reduces the production cost compared to pure Nafion membrane. The weight loss of Res@CDs-Nafion/PTFE and Nafion/PTFE immersed in Fenton's reagent after 36 h is 4.97% and 16.49%, respectively, which demonstrate that Res@CDs can enhance oxidation stability of composite membrane. The Res@CDs-Nafion/PTFE offer huge merits of low cost and enhanced oxidation stability, which greatly promotes the application process of long-lifetime PEM fuel cell.  相似文献   

5.
Novel multiwalled carbon nanotubes (MWNTs) were prepared using poly(oxypropylene)-backboned diamines of molecular weights Mw 400 and 2000 to disperse acid-treated MWNTs, improving the performance of composite bipolar plates in polymer electrolyte membrane fuel cells. A lightweight polymer composite bipolar plate that contained vinyl ester resin, graphite powder and MWNTs was fabricated using a bulk molding compound (BMC) process. Results demonstrate that the qualitative dispersion of MWNTs crucially determined the resultant bulk electrical conductivity, the mechanical properties and the physical properties of bipolar plates. The flexural strength of the composite bipolar plate with 1 phr of MWNTs was approximately 48% higher than that of the original composite bipolar plate. The coefficient of thermal expansion of the composite bipolar plate was reduced from 37.00 to 20.40 μm m−1 °C−1 by adding 1 phr of MWNTs, suggesting that the composite bipolar plate has excellent thermal stability. The porosity of the composite bipolar plate was also evaluated. Additionally, the bulk electrical conductivity of the composite bipolar plate with different MWNTs types and contents exceeds 100 S cm−1. The results of the polarization curves confirm that the addition of MWNTs leads to a significant improvement on the single cell performance.  相似文献   

6.
A high performance poly(vinyl alcohol)/montmorillonite/poly(styrene sulfonic acid) (PVA/MMT/PSSA) proton-conducting composite membrane was fabricated by a solution casting method. The characteristic properties of these blend composite membranes were investigated by using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, methanol permeability measurement, and the AC impedance method. The ionic conductivities for the composite membranes are in the order of 10−3 S cm−1 at ambient temperature. There are two proton sources used on this novel composite membrane: the modified MMT fillers and PSSA polymer, both materials all contain the -SO3H group. Therefore, the ionic conductivity was greatly enhanced. The methanol permeabilities of PVA/MMT/PSSA composite membranes is of the order of 10−7 cm2 s−1. It is due to the excellent methanol barrier properties of the PVA polymer. The peak power densities of the air-breathing direct methanol fuel cells (DMFCs) with 1M, 2M, 4M CH3OH fuels were 14.22, 20.00, and 13.09 mW cm−2, respectively, at ambient conditions. The direct methanol fuel cell with this composite polymer membrane exhibited good electrochemical performance. The proposed PVA/MMT/PSSA composite membrane is therefore a potential candidate for future applications in DMFC.  相似文献   

7.
Low-temperature anion-exchange membrane fuel cells (AEMFCs) are gathering increased attention because they facilitate the use of non-precious metal catalysts, which might drastically reduce costs compared to low-temperature proton exchange membrane fuel cells (PEMFCs). Metallic, e.g., stainless steel, bipolar plates (BPPs) present a cost-efficient solution for this type of cell. However, anodic film formation at high positive potentials (approx. +1.5 V vs. RHE) on uncoated metals/stainless steels leads to high interfacial contact resistance (ICR) of the BPP once exposed to such a potential. A potential of +1.5 V vs. RHE is commonly reached under local and global hydrogen starvation, which rules out the use of uncoated metals in AEMFCs. We have investigated the ICR change and oxide film formation of several materials under simulated fuel cell operating conditions and found that suppression of anodic film formation and, in turn, low ICRs can be achieved by carbon coating of stainless steels.  相似文献   

8.
The quaternary ammonia polysulfone (QAPS) alkaline anion exchange membrane (AAEM) was previously prepared successfully. The QAPS membrane showed good ionic conductivity but poor mechanical strength and high swelling ratio. This study focused on membrane mechanical strength and dimensional stability by PTFE membrane enhancement, which increases the mechanical strength by five times and decreases the swelling ratio by 50%. The fuel cell with the resulted thinner QAPS/PTFE composite membrane with catalyst coated membrane (CCM) as the electrode showed a high power output, and the peak power density of 315 mW cm−2 was achieved at 50 °C.  相似文献   

9.
A strategy to improve the alkaline exchange membrane tensile strength was introduced based on porous PTFE and quaternized polyvinyl benzyl chloride (qPVBz/OH). A thin PTFE film was used as the support to prepare the composite AAEM to improve the mechanical strength. Tensile stress tests showed 51.1 MPa which was twice that of the pure anion exchange membrane qPVBz/OH. SEM observations showed that the pores of the PTFE were successfully filled with qPVBz/OH polymer and there was no structure defects in the cross-section of the resultant membrane. The synthesized composite membrane had very good thermal stability. The through plane ionic conductivity was in the range of 1.65 × 10−2 to 2.2 × 10−2 S cm−1 in the temperature range of 25 °C–60 °C. The power density of H2 and O2 fuel cell gave 162 mW cm−2.  相似文献   

10.
We present a method for fabrication of poly(benzimidazole)/porous poly(tetra fluorocarbon) (PTFE) composite membranes. A coupling agent containing perfluorocarbon sulfonic acid ionomer is used as an interface between PTFE and poly(benzimidazole) (PBI), which contained –NH groups. The porous PTFE substrate was impregnated with a diluted PFSI coupling agent solution. The optimum concentration of the coupling agent solution was that the concentration of coupling agent was just high enough to cover the surface of the fibers of the porous PTFE substrate membranes. The PBI solutions were then fabricated onto the PTFE membranes containing the coupling agent to prepare the proton exchange composite membranes. The PBI/PTFE composite membrane had a film thickness of ∼22 μm and thus a lower proton resistance than a PBI membrane with a film thickness of ∼100 μm. The PEMFC single cell tests showed that PBI/PTFE composite membrane had a better performance than PBI.  相似文献   

11.
Porous polytetrafluoroethylene (PTFE) membranes were used as support material for sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK)/zirconium sulfophenyl phosphate (ZrSPP)/PTFE composite membranes. The membranes were prepared via a spray painting method. Membranes were characterized by thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM). The composite membranes exhibited good thermal stabilities. SEM micrographs confirmed that the pores of the PTFE were filled entirely with SPPESK and ZrSPP. The resulting composite membranes were mechanically durable, dimensionally stable in alternating wet/dry environments, and had lower methanol permeabilities compared with the unsupported SPPESK/ZrSPP composite membranes reported in our previous work. The water uptake of these membranes was also lower than previous SPPESK/ZrSPP composite membranes. The proton conductivity of PTFE supported SPPESK (DS 81%)/ZrSPP(10 wt%) composite membrane was as high as 0.24 S/cm at 120 °C. Thus, the composite membranes exhibited good thermal stabilities, proton conductivities, and good methanol resistance, indicating that these composite membranes could serve as effective alternative membranes for direct methanol fuel cells (DMFCs).  相似文献   

12.
A new multilayered composite membrane was prepared by impregnating a sulfonated poly(arylene ether sulfone) (SPAES) ionomer into a porous polytetrafluoroethylene (PTFE) substrate for application in proton exchange membrane fuel cells (PEMFCs) and water electrolyzers (PEMWEs). The PTFE substrate was treated with n-propyl alcohol to mediate the interfacial interactions between the SPAES solution and PTFE. Using the 10- and 5-μm-thick PTFE substrates, three-layered and five-layered composite membranes were prepared, respectively, to investigate the effect of PTFE thickness on impregnation of the SPAES ionomer. When 5-μm-thick PTFE was applied, the SPAES ionomer was effectively impregnated without noticeable defects, indicating a strong interlocking structure between the two incompatible components. Therefore, the five-layered composite membrane showed enhanced dimensional stability and mechanical properties compared to the SPAES membrane, and the effect of the PTFE on proton conductivity was minimized. Consequently, the cell performances of the five-layered composite membrane were reflected by current densities of 1.71 A/cm2 at 0.5 V and 9.76 A/cm2 at 1.9 V for PEMFC and PEMWE, respectively, corresponding to 44% and 32% increases compared to those of Nafion 212, owing to its smaller membrane resistance. Moreover, the prepared composite membrane presented excellent durability, which resulted in stable wet-dry cyclability and low degradation rates.  相似文献   

13.
Carbon-based films on 316L stainless steel were prepared as bipolar plates for proton exchange membrane fuel cells (PEMFCs) by pulsed bias arc ion plating. Three kinds of films were formed including the pure C film, the C–Cr composite film and the C–Cr–N composite film. Interfacial conductivity of the bipolar plate with C–Cr film was the highest, which showed great potential of application. Corrosion tests in simulated PEMFC environments revealed that the C–Cr film coated sample always showed better anticorrosive performance than 316L stainless steel either in reducing or oxidizing environments. The C–Cr film coated bipolar plate sample also had high surface energy. The contact angle of the C–Cr film coated sample with water was 92°, which is beneficial for water management in a fuel cell.  相似文献   

14.
Polytetrafluoroethylene (PTFE) fine particles (25 μm) were coated with 29–43 wt% Ni using electroless Ni plating. The Ni-plated PTFE (Ni–PTFE) particle conductivity increased concomitantly with increasing Ni contents. For 43 wt% Ni particles, the conductivity was about 300 S m−1. After pressing the particles into plates with 300 kg cm−2 pressure and subsequent heat treatment at 350 °C, acetylene black (AB) and graphite particles were introduced into the plates as conducting materials to elucidate effects on electrical conductivity and gas permeability. Plates containing AB (1.3 wt%) and graphite (5 wt%) respectively showed 1.25 and 1.5 times higher conductivity than the original Ni–PTFE plate did. The AB particles particularly caused pore volume expansion at the 0.1–1.0 μm size range in Ni–PTFE plates. The expanded total pore volume (0.159 cm3 g−1) of Ni–PTFE plate with AB particles improved gas permeability, which increased the electrode life performance (25% up for 24 h) in alkaline fuel cells (AFCs). The current density of Ni–PTFE electrode containing AB particles was about 4.5 times than that of original Ni–PTFE electrode.  相似文献   

15.
High performance and efficiency are often reported in single-cell polymer electrolyte membrane (PEM) fuel cell (FC) experiments. This however, can reduce substantially when moving from single-cell experiments to multiple cells. Fuel cell performance is degraded for many reasons when adding cells, but; possibly the most important, is contact resistance between the bipolar plate and gas diffusion layer (GDL). Contact resistance is in direct relation to the clamping configuration and clamping pressure applied to a FC stack. Simulation of a single cell and 16-cell FC was performed at various clamping pressures resulting in detailed 3D plots of stress and deformation. The stress on the GDL, for any value of clamping pressure simulated in this study, is around 1.5 MPa for the 16-cell stack and around 4 MPa in single cell simulations. Experimental testing of clamping pressure effects was performed on a 16-cell stack by placing a thin pressure-sensitive film between GDL and bipolar plate. Clamping pressure was applied using various loads, durations, and two types of GDLs. The results from experimental testing show that pressure on the GDL is in the range of 0–2.5 MPa. When using rectangular cells, experimental results show nearly zero pressure in the center of each cell and the center cells of the stack, regardless of clamping method.  相似文献   

16.
In our previous work, phosphorylated chitosan was modified through polymer blending with poly(vinyl alcohol) (PVA) polymer to produce N-methylene phosphonic chitosan/poly(vinyl alcohol) (NMPC/PVA) composite membranes. The aim of this work is to further investigate the effects of a propylammonium nitrate (PAN) ionic liquid and/or silicon dioxide (SiO2) filler on the morphology and physical properties of NMPC/PVA composite membranes. The temperature-dependent ionic conductivity of the composite membranes with various ionic liquid and filler compositions was studied by varying the loading of PAN ionic liquid and SiO2-PAN filler in the range of 5–20 wt%. As the loading of PAN ionic liquid increased in the NMPC/PVA membrane matrix, the ionic conductivity value also increased with the highest value of 0.53 × 10?3 S cm?1 at 25 °C and increased to 1.54 × 10?3 S cm?1 at 100 °C with 20 wt% PAN. The NMPC/PVA-PAN (20 wt%) composite membrane also exhibited the highest water uptake and ion exchange capacity, with values of 60.5% and 0.60 mequiv g?1, respectively. In addition, in the single-cell performance test, the NMPC/PVA-PAN (20 wt%) composite membrane displayed a maximum power density, which was increased by approximately 14% compared to the NMPC/PVA composite membrane with 5 wt% SiO2-PAN. This work demonstrated that modified NMPC/PVA composite membranes with ionic liquid PAN and/or SiO2 filler showed enhanced performance compared with unmodified NMPC/PVA composite membranes for proton exchange membrane fuel cells.  相似文献   

17.
The inorganic silica immobilized PWA based (Si-PWA)-PVA/PTFE composite membrane was developed by an amalgamation of pore filling and layer by layer (LBL) casting. The composition of the top layer was optimized to be 0.3 M PWA: 0.2 M TEOS: 0.15PVA concerning to proton-conductivity and methanol permeability of the membrane. Surface morphological studies and elemental analysis were carried out by using SEM-EDX. The FT-IR and XRD analysis had confirmed the intercalation of sol with PTFE. Thermal deformation of the membrane was studied by TGA and it is stable up to 180 °C. Ion exchange capacity and water uptake were determined to be 2.38 meq per gram and 21.7%. The membrane has exhibited maximum proton conductivity of 41.2 mS cm−1 at 100 °C. The membrane has significantly lower methanol permeability of 3.2 × 10−7 cm2 S−1 compared to that of Nafion117 (7.9 × 10−7 cm2 S−1) at 28 °C and the same trend was observed at 40, 60, and 80 °C. The (Si-PWA)-PVA/PTFE composite membrane is showed enhanced proton conductivity and lower methanol permeability at elevated temperatures.  相似文献   

18.
Aluminate cement/graphite conductive composite bipolar plate for proton exchange membrane fuel cells (PEMFC) was prepared by mold pressing at room temperature. The effect of size of graphite particles on the conductivity and the flexural strength of composite bipolar plate were discussed. Resistance to acid corrosion, thermal property and pore size distribution of this composite bipolar plate were also investigated in this paper. The experiment results show that the conductivity and the flexural strength of this composite bipolar plate can be improved by choosing uniform size graphite as conductive fillers. The corrosion current is about 10−4.5 A cm−2 from polarization curves of this composite bipolar plate, which shows that this composite bipolar plate is acid corrosion-resistant. Al and Ca ions may leach from this composite bipolar plate after 1 M H2SO4 acid corrosion. But Al and Ca ions leaching from this composite bipolar plate are only a little percentage of the total Al and Ca ions content in the composite bipolar plate after acid corrosion at 30 °C. This composite bipolar plate is also thermally stable from room temperature to 400 °C. The large amount of pore in this composite bipolar plate is gel capillary pores because of the hydration and solidification of aluminate cement, which make it possess humidifying function during the PEMFC operating.  相似文献   

19.
《Journal of power sources》2006,159(2):951-955
The commercialization of small fuel cells requires both the reduction of components cost and improvement of power density. To meet these requirements, we proposed the concept of an integrated composite membrane electrode assembly (ICMEA) which integrates the functions of conventional MEA, flow field, and current collector. Compared to conventional ones, it is advanced in simplification of fuel cell components, higher mechanical strength and dimensional stability, reduction in volume and weight, lower clamping pressure, and lower cost. A 200 μm thick ICMEA was successfully fabricated. A sandwiched structure was fabricated by attaching an e-PTFE substrate with two finely porous thin metal sheets on each side. After the impregnation of polymer electrolyte, the porous PTFE was filled with the polymer electrolyte and was bounded with the two metal sheets. Catalyst layer was directly coated on the surface of the composite membrane. At ambient conditions, the achieved maximum power density of ICMEA in H2/air fuel cell was nearly 80 mW cm−2.  相似文献   

20.
This research aims to develop polybenzoxazine (PBA) based composites suitable for bipolar plates in proton exchange membrane fuel cells (PEMFCs). PBA composites filled with carbon derivatives i.e. graphite, graphene, and multiwall carbon nanotubes (CNTs) were prepared. The effects of CNT contents from 0–2 wt% at an expense of graphite with constant content of graphene and benzoxazine on properties of the obtained composites were investigated. It was found that the composite with 2 wt% of CNTs exhibited through-plane thermal conductivity as high as 21.3 W/mK which is 44 times higher than that of the composite without CNTs. Also, this composite showed electrical conductivity of 364 S/cm, Flexural Strength of 41.5 MPa and Modulus 49.7 GPa, respectively. These values meet the requirements suggested by the Department of Energy, USA and confirm that these composites are great candidates as bipolar plates for PEMFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号