共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
针对广东某磁铁矿石由于配矿不均等原因,经常出现的精矿铁品位不达标、杂志硫含量高等情况进行了提铁降硫选矿工艺试验研究。试验结果表明,采用阶段磨矿-阶段磁选-浮选降硫选矿工艺流程,最终精矿铁品位可达到66.08%、硫含量降为0.28%,铁精矿质量得到了有效提高。 相似文献
4.
5.
某氧化矿选矿厂为充分利用富余产能,提高铁精矿年产量,对氧化矿进行了选矿试验研究。研究结果表明:采用磨矿—弱磁—1粗1扫强磁工艺流程,在磨矿细度-0.074 mm60%、弱磁选磁感应强度0.14 T、强磁粗选磁感应强度0.9 T、强磁扫选磁感应强度1.3 T的条件下,可获得铁品位64.67%、铁回收率95.16%的铁精矿,产品指标良好,该研究结果为该矿提高铁精矿年产量提供了可行的技术途径,对其他同类矿山具有一定的参考价值。 相似文献
6.
安徽某高硫磁铁矿选矿试验 总被引:1,自引:0,他引:1
对安徽某高硫磁铁矿进行选矿试验研究,充分利用矿石性质差异,在条件试验的基础上,最终确定采用阶段磨矿-弱磁选-浮选工艺,获得的铁精矿TFe品位为66.07%、TFe回收率为73.68%、杂质硫含量为0.10%、硫精矿硫品位为37.67%、硫回收率为42.68%。通过筛分+弱磁组合工艺,能有效提前分选出单体解离较好的铁矿物,可降低2段入磨矿量65.28个百分点,节约成本效果显著。 相似文献
7.
8.
9.
10.
伊朗某磁铁矿石铁品位为58.60%,硫、磷含量较低,86.76%铁以磁铁矿的形式存在。矿石粒度较细,-2.36 mm粒级占54.00%。为确定该矿石合理的选矿工艺流程,进行选矿试验。结果表明,原矿预先分级—+2.36mm粗粒磨矿(-0.074 mm18.20%)—1次弱磁选—-2.36 mm细粒级直接弱磁选流程可获得TFe品位66.93%、回收率91.22%的合格铁精矿; 1粗1精螺旋溜槽重选可有效回收弱磁尾矿中铁,重选精矿与弱磁精矿合并后仍满足铁精矿合格标准。在此基础上,根据生产要求,该工艺可作为该矿石的推荐选矿流程。 相似文献
11.
为高效回收利用内蒙古某高硫铅锌多金属矿,针对矿物组成复杂,闪锌矿、方铅矿与黄铁矿间多为间隙充填、胶结,接触面弯曲变化较大,嵌布关系复杂,粒度微细的特点,采用铅、锌、硫优先浮选工艺流程进行了试验研究。试验获得的铅精矿品位45.29%、回收率38.83%、金品位2.66 g/t、银品位59.70 g/t,锌精矿品位46.80%、回收率81.52%,硫精矿品位48.63%、回收率84.19%,为选矿厂生产提供了可靠的技术依据。 相似文献
12.
13.
安徽某铁矿选矿工艺试验研究 总被引:1,自引:1,他引:1
安徽某铁矿全铁含量30.14%,其中磁性铁13.40%,硅酸铁13.87%。通过详细的选矿工艺研究,试验最终确定采用-2mm原矿预选抛尾单一弱磁流程,得铁精矿品位65.60%、对全铁回收率47.42%的指标。进一步将铁精矿通过反浮选方法探索生产超级铁精矿,最终获得部分品位70.61%、回收率17.63%的超级铁精矿和部分品位64.16%、回收率29.79%的普通铁精矿。 相似文献
14.
15.
陕西某铜金铁多金属矿矿石成分主要为黄铁矿、磁铁矿和黄铜矿,金主要赋存在硫化矿中。为综合利用该矿石,采用原矿经磨矿—抑硫浮铜—选硫—选铁,并将金富集在黄铜矿中的优先浮选工艺流程进行选矿试验研究。结果表明,采用该流程可较好实现该多金属矿的综合回收,选矿指标良好,其中铜精矿指标为铜品位20. 29%、铜回收率95. 62%、金品位36. 71 g/t,金回收率81. 90%;硫精矿指标为硫品位42. 67%,硫回收率56. 63%;铁精矿指标为全铁品位62. 51%,全铁回收率15. 10%。 相似文献
16.
17.
18.
磁黄铁矿的有效脱除对于降低铁精矿的硫含量至关重要.新桥矿业有限公司含硫磁铁矿中磁黄铁矿含量高,为了有效地降低最终铁精矿的硫含量,介绍了采用HH-1高效活化剂进行脱硫试验的选矿工艺及结果 相似文献
19.
20.
某含铜高硫磁铁矿石选矿试验 总被引:1,自引:0,他引:1
针对某磁铁矿石中含铜且磁黄铁矿含量高的特点,采用弱磁选-弱磁选精矿反浮选脱硫-弱磁选尾矿浮铜工艺进行选矿试验,获得了铁品位为66.85%,铁回收率为67.82%,硫含量仅0.20%的铁精矿和铜品位为23.40%,铜回收率为64.06%的铜精矿以及硫品位为23.05%的附加产品硫精矿,实现了铁、铜、硫的综合回收。草酸对磁黄铁矿的选择性活化作用和新型捕收剂CYS对磁黄铁矿的强捕收能力是磁铁矿与磁黄铁矿得以高效分离的关键。 相似文献